
www.manaraa.com

Copyright

by

Feng Wang

2007



www.manaraa.com

The Dissertation Committee for Feng Wang
certifies that this is the approved version of the following dissertation:

On Multihop Wireless Network Management:

Measurement, Modeling and Control

Committee:

Simon S. Lam, Supervisor

Lili Qiu, Supervisor

Mohamed G. Gouda

Aloysius K. Mok

Yongguang Zhang



www.manaraa.com

On Multihop Wireless Network Management:

Measurement, Modeling and Control

by

Feng Wang, B.S., M.S.

DISSERTATION

Presented to the Faculty of the Graduate School of

The University of Texas at Austin

in Partial Fulfillment

of the Requirements

for the Degree of

DOCTOR OF PHILOSOPHY

THE UNIVERSITY OF TEXAS AT AUSTIN

August 2007



www.manaraa.com

UMI Number: 3277871

3277871
2007

Copyright 2007  by
Wang, Feng

UMI Microform
Copyright

All rights reserved. This microform edition is protected against 
    unauthorized copying under Title 17, United States Code.

ProQuest Information and Learning Company 
300 North Zeeb Road

P.O. Box 1346
     Ann Arbor, MI 48106-1346 

All rights reserved.

 by ProQuest Information and Learning Company. 



www.manaraa.com

To my grandmother,

my parents,

and

my dear wife Xiaoli



www.manaraa.com

Acknowledgments

I am thankful to many people during my doctoral study. They have helped

me in many different ways. Of these people, my special thanksgo to my co-

supervisors, Prof. Simon S. Lam and Prof. Lili Qiu. I wouldn’t have gone this

far without their guidance and generous support.

I am grateful to the precious time Prof. Lam spent on me. His rigor,

high standards, and extensive knowledge in computer networks have benefited me

tremendously and will benefit my future career.

I owe huge gratitude to Prof. Qiu. Her enthusiasm, insightful thinking, and

persistence on research quality have shed light for me on my work. She has given

me enormous advice and taught me many skills during my research. She has also

provided me equipments for conducting important experiments.

I am also grateful to Dr. Yongguang Zhang. I was inspired by him to start

my research in wireless networks. I learned many basics fromhim, which have

been very valuable for my later work.

I truly thank my committee members, Prof. Mohamed G. Gouda and Prof.

Aloysius K. Mok, for their time, commitment and advice.

I’d also like to thank my colleagues and members of my research group,

especially Yun Mao, Mi Kyung Han, Dong Young Lee, Yan Li, Yi Li, Eric Rozner,

Yogita Ashok Mehta, and Jayesh Seshadri.

v



www.manaraa.com

On Multihop Wireless Network Management:

Measurement, Modeling and Control

Publication No.

Feng Wang, Ph.D.

The University of Texas at Austin, 2007

Supervisors: Simon S. Lam
Lili Qiu

Multihop wireless networks are becoming a new attractive communication

paradigm owing to their low cost and ease of deployment. Managing multihop

wireless networks, however, is especially challenging dueto a fluctuating wireless

medium, presence of wireless interference, and the increasing demand for them to

scale to large sizes.

This dissertation tackles the multihop wireless network management chal-

lenges by systematically integrating measurement, modeling and control. On the

measurement and modeling side, this dissertation developsa novel probabilistic

region-based localization algorithm to accurately determine node locations with

limited and noisy measurement information. The dissertation further develops a

general model of wireless interference to estimate throughput and goodput between

arbitrary pairs of nodes in the presence of interference from other nodes in a wire-

less network. Our model advances state of the art in interference modeling by (i)
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estimating interference among an arbitrary number of senders, (ii) modeling uni-

cast transmissions, and (iii) modeling the general case of heterogeneous nodes with

different traffic demands. On the control side, we investigated one of the most im-

portant network control problems – design of routing protocols for large wireless

networks. We developed a new routing protocol, Small State and Small Stretch

(S4) to jointly minimize routing state and routing stretch.S4 uses a combination of

beacon distance-vector based global routing state and scoped distance-vector based

local routing state to achieve a worst-case stretch of 3 using O(
√

N) routing state

per node in an N-node network. Its performance benefits are further demonstrated

in extensive simulation and testbed experiments.
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Chapter 1

Introduction

The past decade has seen enormous development in wireless technologies.

The technology advances boost the growth of diverse wireless networks, from single-

hop wireless networks (SWNs) to multi-hop wireless networks (MWNs). In SWNs,

such as cellular networks and wireless local area networks (WLANs), every node

is within one hop of a central entity (base stations, access points). Users only com-

municate with the central entity. SWNs require much infrastructure support, hence

are expensive to deploy. In comparison, nodes in MWNs can communicate with

each other over multiple hops. MWNs require no or little infrastructure support.

They are easy to deploy and cost-effective. Examples of MWNsinclude mobile

ad-hoc networks (MANETs), wireless sensor networks (WSNs), and wireless mesh

networks (WMNs). MWNs provide a platform for a broad range ofapplications,

both special-purpose (e.g.search and rescue, environment monitoring) and general-

purpose (e.g.broadband wireless Internet access). Therefore they have attracted

more and more interests from researchers, network designers, and users. However,

MWNs are very difficult to manage, due to fluctuating wirelessmedium, the pres-

ence of wireless interference, and the increasing demand for them to scale to large

sizes. This dissertation tackles the challenges in MWNs management by systemat-

ically integrating measurement, modeling and control.

1
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1.1 Background on Multi-hop Wireless Networks (MWNs)

The initial research on MWNs started in the early 1970’s whenpacket radio

networks were studied. There were limited prototypes in labs and military depart-

ments. MWNs received much wider attention since late 90’s, thanks to the IEEE

standardization efforts and the commercial success in wireless networks. Currently,

there are three prevailing types of MWNs: MANETs, WSNs, and WMNs. In this

section, we give a brief background on these networks.

1.1.1 Mobile Ad Hoc Networks (MANETs)

A mobile ad-hoc network consists of a collection of “peer” mobile nodes

that are capable of communicating with each other without help from a fixed in-

frastructure. Each node is an end user as well as a router. Theinterconnections

between nodes may change on a continual and arbitrary basis.Nodes within each

other’s radio range communicate directly via wireless links, while those that are far

apart use other nodes as relays in a multi-hop fashion.

MANETs are suited for scenarios where an infrastructure does not exist,

e.g.in disaster recovery situations where existing communication networks are de-

stroyed. It is much quicker to deploy MANETs than rebuildingthe infrastructure

in these scenarios. MANETs are also proper choices for communications on battle

fields where military units may move constantly and multi-hop connectivity may be

desired.

There has been extensive research on MANETs, especially theMAC, rout-

ing and transport issues [104].

2
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1.1.2 Wireless Mesh Networks (WMNs)

Generally, the nodes in a WMN can be categorized into two classes [4]:

mesh routersandmesh clients. Mesh routers are nodes at the core of a WMN. They

are dedicated for relaying traffic. Some mesh routers are connected to Internet

through wired links. These routers act as gateways between wireless users and

Internet. Mesh routers may provide ethernet interfaces to users without wireless

network interface cards (NICs). Mesh routers are usually static. Mesh clients are

wireless nodes at user side. They are the sources and destinations of the data traffic.

They also have the option to participate in routing. An example WMN is shown in

figure 1.1.

WMNs can be deployed over a metropolitan area, or over a community

neighborhood. WMNs target at general-purpose civilian applications,e.g.broad-

band wireless Internet access, community networking and intelligent transportation

systems.

The unique application scenarios have driven much research[4] in WMNs,

particularly on performance, scalability and reliabilityissues.

1.1.3 Wireless Sensor Networks (WSNs)

A wireless sensor network consists of potentially large number of sensors,

which are small, low-cost, low-power, and resource-constrained devices. Same as

in MANETs, operations of WSNs do not require infrastructuresupport. Sensors can

propagate the sensed and partially-processed data over multiple hops. Furthermore,

there are usually some sink nodes in WSNs, which are responsible for collecting

3



www.manaraa.com

wired
connection

connection
wireless

Internet

C1

C2

R3
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R4

C6
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C5D1

Figure 1.1: An example wireless mesh network. Three representative paths: (1)
C2-R2-R1-Internet; (2) C1-R2-R3-C5; (3) C3-C4-R4-C6

the data. These sink nodes may send the data to a processing unit via other wired

or wireless links.

WSNs are especially suited for environment monitoring in hazard or inac-

cessible places. Sensors are deployed densely and randomlyin these places. WSNs

can also be useful in health care to monitor and assist patients. Other applications

include surveillance and targeting systems, smart home, etc.

Many research efforts have been made on WSNs. Especially, energy effi-

ciency, fault tolerance and scalability [3] are among the active research topics due

to resource constraints of sensors.

4
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1.2 Motivation

Multihop wireless networks are becoming a new attractive communication

paradigm owing to low cost and ease of deployment, and have found more and more

applications. However, to fully achieve the promising features of MWNs, many re-

search problems [3] [4] [11] still remain to be solved, such as network management,

cross-layer protocol design and analysis, wireless security, etc. These problems

may exist in other types of wireless networks too, but they become much more

complicated in MWNs. In particular,network managementis a challenging prob-

lem in MWNs due to multihop connections, wireless interference and increasing

network scales.

1.2.1 What is Network Management?

Network management involves so many issues that it is hard togive a short

definition. In [16], the author gives an intuition:

“Intuitively, network management encompasses tasks associated with

planning, deploying, configuring, operating, monitoring,tuning, re-

pairing, and changing computer networks.”

Network management, manual or automatic, is needed once a network is es-

tablished. Simply put, there are three phases in managing a network:measurement,

modeling, andcontrol, as figure 1.2 shows. A management process may involve

one or more of three phases.

5
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planning
initial

desired
state

optimization,
topology change,
etc.

current
state

routing
power adjustment
channel assignment

Control:

fault diagnosis and repair
etc.

node placement

impact of wireless
interference

Modeling:

node distance
interference
throughput
delay
etc.

Measurement:
network connectivity

Figure 1.2: Three phases in network management
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After the initial planning and deployment, network management may start

with measuring the current network state,e.g.topology (network connectivity, node

distance, interference, etc.), traffic (sources and destinations, transport protocol,

etc.), and performance (throughput, delay, etc.). This phase collects information

about how the network performs under current configurations.

The modeling phase abstracts and formalizes the general rules about the

interrelationships,e.g. the impact of wireless interference, among the nodes and

links. These rules may apply to any arbitrary network, not necessarily limited to

the specific network of interest. Modeling phase takes measurements from real

networks as input. With modeling, the managing entities canderive information

that is otherwise expensive or difficult to measure directly, e.g.physical locations

of nodes. Modeling also provides managing entities the capability to apply what-if

analysis, and infer the performance under other configurations. Such analysis and

inference can help managing entities determine the desirednetwork configuration

from possible choices.

Finally, the managing entities control the network behavior based on the

output from the modeling phase,e.g. tuning or repairing the network to improve

performance or achieve quality of service (QoS) requirements. Possible control

parameters are routing mechanisms, channel assignment, transmission power, node

placement, etc.

The above process of network management may repeat over multiple itera-

tions for optimization purpose. It may also repeat because the network conditions

change due to link failures, traffic turning on or off, environmental changes, etc.
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1.2.2 Challenges in MWNs Management

The difficulty of network management increases dramatically along with

the complexity of the network structure and traffic. Particularly, MWNs pose new

challenges to all three phases in network management.

Multihop connections: Compared to nodes in SWNs, nodes in MWNs are con-

nected in multiple hops. Moreover, MWNs do not have sufficient infrastructure

support. Consequently, measurement tasks such as localization are more difficult to

accomplish in MWNs than in SWNs, since most nodes are not within communica-

tion ranges of central entities.

Wireless interference:Understanding the impact of interference on real networks

is extremely difficult, since interactions among nodes in MWNs are more compli-

cated than in SWNs. Each node can be a source, destination, oreven a router.

Different nodes may have different traffic demands. Due to phenomenons such as

hidden terminal and exposed terminal problems in MWNs, transmissions from one

node may potentially affect not only neighboring nodes, butalso nodes far away.

Therefore it is much more difficult to model the impact of interference.

Large scale:MWNs such as WSNs and WMNs are expected to span a large scale,

with respect to both number of nodes and size of the coverage area. WSNs may

consist of tens of thousands of sensors, while WMNs may coverthousands of nodes

in a metropolitan area. Controlling such a large-scale network, particularly routing,

is a challenging issue.
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1.3 Contributions of the Dissertation

This dissertation tackles the challenges in MWNs management by system-

atically integrating measurement, modeling and control. On the measurement and

modeling side, this dissertation addresseslocalization under multihop connections

andmodeling of wireless interference. They do not directly change the way MWNs

operate, but provide useful information for control of networks. On control side,

this dissertation addressesrouting in large scale MWNs.

The contributions of this dissertation are a set of approaches to MWNs man-

agement. Specifically, we propose (1) probabilistic region-based algorithms for lo-

calization under multihop connections, (2) a general modelthat captures impact

of wireless interference and predicts network throughput and goodput, and (3) a

small state and small stretch routing protocol that achieves scalability, efficiency,

and reliability.

1.3.1 Probabilistic Region-Based Localization

Localization is to determine the physical locations of wireless nodes in the

network. Providing location service is desired in MWNs management. It can

improve performance of MAC and routing protocols. It also enables location-

dependent applications. Centralized localization approaches exist to obtain loca-

tion information. But they either are too costly (e.g.GPS [34]), or target at single-

hop localization (e.g.activeBadge [105], RADAR [6], VORBA [73]). In this disser-

tation, we focus on distributed localization in MWNs. Although many distributed

localization algorithms have been proposed [42, 95, 96], the following three top-
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ics require further study: First, developing accurate localization algorithms using

only connectivity information. Node connectivity is usually correlated with node

locations. However, connectivity constraints may not be sufficiently strong to pin-

point a node. Therefore assigning the location of a wirelessnode to a single point

may result in significant error. Second, leveraging additional information on loca-

tion constraints. Localization accuracy relies heavily onthe amount of available

information about location constraints. To further improve accuracy, it is impor-

tant to identify and exploit additional information on location constraints. Third,

enhancing robustness of localization against erroneous information. Robustness is

essential to the success of any localization scheme since erroneous measurement

reports may arise from measurement errors, loss of measurement data, and hard-

ware/software problems.

Our solution to localization problem has following three novelties. First, we

develop probabilistic region-based localization algorithms, including using static

grids, dynamic meshes, and segments of grids. Second, we propose several tech-

niques to extract and leverage additional information on location constraints. The

additional information can be applied to both our and others’ localization schemes.

Third, we develop techniques to enhance robustness of localization.

In our probabilistic region-based approach, we use a regionto represent a

node’s estimated location. Each node derives a probabilitydistribution over a set

of cells in its region that it can possibly reside in. Every cell is associated with

a probability about the likelihood that it contains the trueposition of the node.

Starting from a small set of anchor nodes whose locations areknown (e.g. from
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GPS), our approach iteratively refines the probability distributions using location

constraints, such as connectivity measured from the underlying network. A location

constraint from nodeA to nodeB gives a probability distribution over the cells of

B. The final probability of each cell is the product of the probabilities derived from

all constraints, followed by normalization.

We also propose to measure and leverage additional locationconstraints: (i)

network connectivity under different transmission power levels, which gives finer

distance constraints, (ii) knowledge of carrier-sensibility [2], which gives extra dis-

tance constraint, (iii) layout maps, which restrains possible regions, and (iv) con-

nectivity under directional antennas, which gives angle constraints.

Furthermore, our probabilistic region-based localization can be extended

naturally to handle measurement errors and enhance robustness: the probability

computation can take into account of the extent to which the location constraints are

satisfied. In this way, a mesh cell that is inconsistent with most location constraints

is assigned a low probability and pruned out, whereas a mesh cell satisfying most

location constraints (but not necessarily all the constraints) will still be retained.

We evaluate our localization approach with extensive simulations. The re-

sults show that our approach provides a wide range of trade-off between accuracy

and computation costs, making it suitable for difference types of MWNs, such as

WSNs and WMNs. The results also verify additional location constraints can sig-

nificantly improve the accuracy. Moreover, we demonstrate our enhanced scheme

for robustness can achieve high accuracy even in the presence of significant mea-

surement errors.
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1.3.2 A General Model of Wireless Interference

Wireless interference is fundamental to the performance ofwireless net-

works. Understanding wireless interference is essential to the design and manage-

ment of wireless networks. However, it is extremely difficult to accurately estimate

interference and its impact on network performance due to the complicated inter-

actions among nodes in real networks. Despite significant progress on modeling

wireless network performance, several important issues need to be addressed in or-

der to accurately model wireless interference. First, the existing models for general

network topologies can only handle two broadcast senders ortwo flows. Modeling

wireless interference in the presence of an arbitrary number of senders is signif-

icantly more challenging due to the complex interactions among different nodes.

Second, the existing models for general network topologiesonly consider broad-

cast traffic. A unicast transmission is more common, but it involves transmissions

in two directions: data and ACK. Hence modeling unicast transmissions introduces

additional complexities. Third, real networks often consist of heterogeneous nodes

with different traffic demands and different radio characteristics. It is therefore es-

sential for the interference model to support such heterogeneity.

To study wireless interference and its impact, we develop a general interfer-

ence model that allows us to accurately estimate the throughput and goodput from

real measurements in static multi-hop wireless networks. Compared to existing

measurement-based models, our model advances the state of art in three important

ways. First, it goes beyond pairwise interference and estimates interference among

an arbitrary number of senders. Second, it goes beyond broadcast transmissions and
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models the more common case of unicast transmissions. Third, it can accurately

model interference in a heterogeneous environment with arbitrary (non-saturated)

traffic demands, asymmetric link quality, and non-binary interference relationships.

Our model captures the interdependencies among the transmissions and re-

ceptions of all nodes. The inputs to the model are:i) traffic demand from each

sender to each receiver , andii) RF profile, which refers to the received signal

strength (RSS) between every pair of nodes. The outputs are the throughput and

goodput, normalized by MAC layer data rate. We obtain the RF profile from simple

measurements. For anN-node network, our model requiresO(N) measurements,

the minimum to build an RF profile for allN nodes. In the measurement phase, each

node broadcasts in turn, while otherN − 1 nodes listen and record received signal

strength index (RSSI) information for each received packet. From these measure-

ments, we recover pairwise RSS and background interferencedue to sources other

than nodes in the modeled network (Section 3.7). Then, we apply our sender model

to estimate the amount of traffic sent by each sender under thegiven demand and our

receiver modelto estimate the amount of traffic successfully received. Forsaturated

broadcast demands, our model can estimate throughput and goodput by computing

the stationary probabilities of a Markov model. For unicastdemands or unsaturated

broadcast demands, the transition matrix of the Markov model involves additional

variables and its stationary probabilities are solved in aniterative framework.

To validate our model, we conduct extensive simulations using the Qualnet

simulator [84] and real experimental measurements from wireless testbeds. The

results show that our model gives accurate prediction over awide range of scenarios.
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1.3.3 Small State and Small Stretch Routing

Routing is a functionality of finding paths and controlling the packets to

follow them. The effectiveness of routing protocols directly affects network scal-

ability, efficiency, and reliability. With continuing growth of MWNs scales, it is

difficult yet important to develop routing protocols thatsimultaneouslyachieve the

following design goals: First, small routing state. Using small amounts of routing

state is essential to achieving network scalability. It reduces the storage require-

ment to form large networks. It also helps to reduce control traffic in route setup

and maintenance, since the amount of routing state and control traffic are often

correlated. Second, small routing stretch. Routing stretch is defined as the ratio be-

tween the cost of selected route and the cost of optimal route. Small routing stretch

means that the selected route is efficient compared to the optimal route. Given the

limitation on routing state, it is a challenging issue to achieve small routing stretch.

Third, resilience. Wireless networks often experience frequent topology changes

arising from link failures, and environmental changes. Howto find efficient routes

for instant recovery is difficult.

We present a new routing protocol, Small State and Small Stretch (S4),

which jointly minimizes the state and stretch. S4 is a uniqueaddition to the routing

protocol design space. It is the first routing protocol that achieves a worst-case con-

stant routing stretch of 3, usingO(
√

N) routing state per node, in anN-node large

scale wireless networks. It significantly enhances networkresilience employing a

distance guided local failure recovery scheme.

S4 exploits the theoretical ideas of the compact routing algorithm [101]. In
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S4, a subset of nodes are chosen as beacon nodes. Each node maintains a local

cluster according to its distance to the closest beacon. S4 consists of the following

three major components: (i) scoped distance vector for building and maintaining

routing state to nodes within a cluster, (ii) resilient beacon distance vector for ef-

ficient routing towards beacon nodes and facilitating inter-cluster routing, and (iii)

distance guided local failure recovery for providing high quality routes even under

dynamic topology changes.

S4 starts with measurement phase, in which nodes learn aboutnetwork

topology. First, beacon nodes broadcast global beacon messages to the whole net-

work. Each node measures its “distance” to a beacon upon receiving a beacon

message. Then, each node sends scoped cluster messages, with the scope being its

“distance” to the closest beacon. Upon receiving any cluster message, a node adds

the source of the message into its local cluster.

With the above measurements of topology, each node can control the rout-

ing to achieve scalability, efficiency, and reliability. Each node maintains state,

i.e.next hop and cost, of optimal routes to beacon nodes and nodesin its local clus-

ter. The routing criteria are as follows: if a destination iswithin the local cluster

(intra-cluster routing), a node forwards packets along theoptimal route; if a destina-

tion is outside the local cluster (inter-cluster routing),a node first forwards packets

along the optimal route to the beacon closest to the destination, and then to the

final destination. When a route failure occurs, the forwarding node broadcasts a

recovery request message to neighbors. Upon receiving recovery reply messages,

the forwarding node chooses the neighbor closest to the destination for recovery.
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We evaluate S4 using both simulations in TOSSIM, a packet-level simulator

for large-scale WSNs, and experiments in a 42-node WSN testbed. TOSSIM simu-

lations fully stress the scalability, while the testbed experiments evaluate S4 under

realistic RF and failure dynamics. The results show that S4 is scalable, efficient,

and resilient to failures in a wide range of scenarios.

1.4 Organization

This dissertation is organized as follows. Chapter 2 presents the probilistic

region-based localization approach. We start with basic algorithm and then pro-

pose techniques to improve accuracy and computation cost, extensions to leverage

additional location constraints, and enhancement to achieve robustness. We show

evaluation results from simulations. Chapter 3 introducesthe interference modeling

problem and presents a general measurement-based model. Experiment results are

shown to verify the accuracy of the model. Chapter 4 presentsS4 routing proto-

col. We first describe theoretical idea and the three major components of S4. Then

we evaluate it using both TOSSIM simulations and testbed experiments. Finally,

Chapter 5 concludes and gives possible directions for future research.
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Chapter 2

Probabilistic Region-Based Localization

2.1 Overview

Determining the physical location of wireless nodes is important to a wide

variety of applications, ranging from geographic routing [45, 86] to context-aware

applications [52, 55], from habitat monitoring [13] to environment surveillance [5,

98].

A global positioning system (GPS) [34] can be used to obtain location in-

formation. But it requires line-of-sight communication with the satellites, and does

not work in either indoor or outdoor environments with lots of obstacles (e.g.urban

area). It is also costly to equip every wireless node with GPS. The limitation of

GPS has motivated researchers to develop algorithms to infer location using cheap

hardware by leveraging network connectivity, signal strength, and angle-of-arrival

information [6, 40, 42, 68, 73, 95, 96, 105]. Despite extensive research in the area of

localization, the following three topics in localization research require further study.

First, developing accurate localization algorithms basedon only connec-

tivity information is an active research topic. A major factor that determines the

effectiveness of the algorithms is how the estimated locations are represented. In

many previous studies, the location of a node is estimated asa single point. As
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shown in [24], there are often many coordinate assignments that satisfy the location

constraints derived from an underlying network. Thereforeassigning the location

of a wireless node to a single point may result in significant error. For example,

as described in [35], when a node is constrained to be locatedat four corners of a

region, a single point estimation may place the node at the center, which is mislead-

ing. In addition, a single point representation is vulnerable to measurement errors

– a small perturbation in measurement data may result in a large difference in the

estimated location [71]. The novel approaches, proposed byGalstyan et al. and

Guha et al. [29,35], are to represent the estimated locationas a region that consists

of all points satisfying the location constraints. Such a region-based representation

has the potential to yield higher accuracy.

Motivated by [29, 35], we also use a region to represent a node’s estimated

location. To achieve even higher accuracy, we propose a probabilistic localization

approach. In this approach, each node derives a probabilitydistribution over a set

of cells that it can possibly reside in. Every cell is associated with a probability

about the likelihood that it contains the true position of the node. Furthermore, we

propose two techniques to reduce computation cost. The firsttechnique combines

cells into segments, which significantly reduces computation cost with a moderate

increase in localization error. The second technique is called probabilistic dynamic

mesh-based localization (PDM). It uses a mesh generator to partition a region into

a mesh, and represents the estimated location of a wireless node as a set of mesh

cells. It iteratively refines the estimated location using location constraints extracted

from the underlying network. It achieves high accuracy by deriving the probability
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distribution of a node’s position over the region. It achieves reasonable cost by

adaptively changing the mesh cell size using DistMesh [21],which is an efficient

way to generate an unstructured triangular and tetrahedralmesh to cover a region.

Second, localization accuracy relies heavily on the amountof available in-

formation about location constraints. For example, as shown in [23], there is a

fundamental limit in localization accuracy using commodity 802.11 hardware. To

further improve accuracy, additional information on location constraints is neces-

sary. In this dissertation, we propose the following ways toobtain and leverage

additional information: (i) using network connectivity under different transmission

power levels, (ii) using knowledge of whether two nodes can sense each other’s

carrier, which can be measured empirically as shown in [2], (iii) using layout maps,

and (iv) using more powerful anchor nodes (e.g., the anchor nodes can not only ex-

tract distance constraints for its neighbors, but also obtain the approximate angles).

We also evaluate the benefit of each type of such additional information.

Third, therobustnessissue in localization has received little attention, even

though robustness is essential to the success of any localization scheme since we

cannot expect that measurements are always accurate. Erroneous measurement re-

ports may arise from measurement errors, loss of measurement data, and hard-

ware/software problems. Our probabilistic region-based localization provides a

natural mechanism to handle measurement errors – the probability computation can

take into account of the extent to which the location constraints are satisfied. In this

way, a mesh cell that is inconsistent with most location constraints is assigned a low

probability and pruned out, whereas a mesh cell satisfying most location constraints
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(but not necessarily all the constraints) will still be retained.

In summary, while localization has been an extensively studied subject, our

approach has the following three novel contributions. First, we develop proba-

bilistic region-based localization algorithms, including using static grids, dynamic

meshes, and segments of grids. These algorithms provide a wide range of trade-off

between accuracy and cost. For example, the segments-basedapproach yields low

cost and high accuracy, and is well suited for networks formed by less powerful

nodes, such as sensor networks. In comparison, the PDM achieves a higher ac-

curacy at a higher cost, making it suitable for networks formed by more powerful

nodes, such as mesh networks. Second, we propose several techniques to extract

and leverage additional information on location constraints. The additional infor-

mation can be applied to both our and others’ localization schemes. Our results

show that the additional information can significantly improve localization accu-

racy. Third, we develop techniques to enhance robustness oflocalization, and show

that the enhanced algorithm can tolerate significant errorsfrom measurement data.

2.2 Related Work

Localization has been extensively studied due to its great importance. We

broadly classify previous work into the following four areas: (i) localization over

single-hop wireless connections, (ii) localization over multihop wireless connec-

tions, (iii) analysis of the fundamental limitations of localization schemes, and (iv)

controlling node placement to ease localization.
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Localization over single-hop wireless connections: For localization over single-

hop wireless connections, nodes are one hop away from anchornodes whose loca-

tions are known. Many approaches have been proposed in this area. Most of them

localize users or hosts inside an office building. The general procedure is similar for

all approaches: first, estimate relative locations (e.g.distance, angle) of nodes with

respect to anchors; then, infer absolute locations from relative locations. However,

there are many different ways to estimate distance or angle:ranging with infrared,

radio signal, ultrasound; Time Difference of Arrival; Angle of Arrival, etc. Ac-

cordingly, the techniques applied to infer locations can bedifferent as well, such as

trilateration, triangulation, data-fitting, etc.

Active Badge [105] is a location system for in-building localization of of-

fice staff. Staff members wear infrared (IR) badges that periodically transmit unique

identifiers. Sensors are deployed as anchors around the building to receive IR sig-

nals from badges. A central location server polls sensors about signals from badges

and determines locations of staff members based on which sensors hear the signals

from their badges. Active Badge locates staff members to thelevel of rooms where

they are sighted. It requires support from extra infrastructure of sensors, which may

incur high cost of deployment.

RADAR [6] tackles the problem of localization for radio frequency (RF)

based wireless networks in in-building environments. It relies on signal strength

measurement gathered at multiple receiver locations to determine locations of users

by triangulation. Three base stations record signal strength of beacons from hosts.

In off-line phase, signal strength information as a function of location is collected.
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Then in real-time phase, the base stations measure signal strength from a host to be

localized, and infer its location that best matches the collected data. The accuracy

of RADAR depends on the accuracy of the signal strength map collected in off-

line phase. When the signal strength varies significantly,e.g.due to people moving

around, it may require to measure a new signal strength map.

Cricket [83] is another location system for in-building applications. Bea-

cons are deployed at strategic locations inside a building.Beacons send out mes-

sages to advertise their location information. Each mobileor static device is equipped

with a listener. Listeners receive messages from beacons and infer their own loca-

tions from these messages. For a listener to determine the distance to beacons,

Cricket uses a combination of RF and ultrasound signals. Each time a beacon ad-

vertises its location over an RF signal, it concurrently sends an ultrasonic pulse.

A listener listens to both RF signals and ultrasonic pulses,and uses the difference

between the arrival time of radio and ultrasound signals to estimate distance to

beacons and further infer its location. As in RADAR, the variations of RF sig-

nal strength may also affect the accuracy of Cricket. In addition, the placement of

beacons is nontrivial and increases cost.

VORBA [73] is an indoor 802.11 positioning system. It exploits the idea of

VOR (VHF Omnidirectional Ranging) using 802.11 hardware. Customized VOR

base stations are equipped with directional antenna or phased antenna array to mea-

sure both angles and ranges. A host can measure its angle of arrival (AOA) of

signals from a base station, relative to the center direction of the strongest signals.

It can also estimate its range to a base station based on average signal strength (SS)

22



www.manaraa.com

from all angles. A host determines its location based on AOA measurements (tri-

angulation), ranges (trilateration), or a combination of both. VORBA also requires

support from special infrastructure.

In [39], Haeberienet al. build a system using probabilistic techniques for

localization across an office building. The whole building is divided into a set of

cells with fixed sizes, typically one cell per office. In the first step to obtain train-

ing data, base station scans are conducted to cover entire area of each cell. Then

for each base station, the distribution of its signal intensities in a cell is inferred

by fitting the training data to a normal distribution. Finally, a probability distri-

bution over cells is calculated to represent location estimation. Compared to this

work, our approach derives probability distributions differently. Instead of relying

on detailed signal intensity maps which are subject to unpredictable variations, our

approach calculates probability distributions based on location constraints among

nodes. Moreover, in our approach, the cell sizes are not fixedbut adaptive to esti-

mation confidence.

In [68], Madiganet al. develop an indoor positioning system based on

Bayesian graphical models. It simultaneously locates a setof wireless clients (as

opposed to localizing one user at a time). The system requires datasets of received

signal strength (RSS) measurements from base stations to clients. The models cap-

ture the relationships between locations and RSS. The locations are inferred by

applying Bayesian analysis to the models.

SeRLoc [60] is a range-independent localization algorithmsuited for wire-

less sensor networks. The network consists of a small numberof locators with

23



www.manaraa.com

known locations and a large number of sensors to localize. Each locator is equipped

with an array of sectored antennas. Sensors are equipped with omnidirectional an-

tennas. Locators transmit beacon messages containing their coordinates and direc-

tions of antenna boundary lines. Beacons from different antennas cover different

sectors. Given the locator-to-sensor communication range, a sensor can infer its lo-

cation after receiving beacon messages. The final estimation is the center of gravity

(CoG) of the intersection region of several sectors. SeRLocuses a grid score table

to find the intersection region.

A zero-configuration system is proposed in [67] for indoor localization. It

takes on-line RSS measurements between 802.11 APs, which are used to analyze

the effects of multi-path fading and environmental variations on RSS and create a

mapping between RSS and geographical distance. A client measures RSS from APs

and then estimates its distance to APs from the signal-distance map (SDM). A gra-

dient descent method is applied to estimate location of the client that minimizes an

objective function. The assumption behind this system is that, for an office building,

RSS between APs and RSS between clients and APs have similar relationship with

distances. This assumption may be problematic consideringthe different locations

of clients and APs: APs are usually mounted on walls or other high places while

clients are often on desks. There is normally more human mobility around a client

than around an AP.

Thunder [107] is a centralized localization scheme for large outdoor WSNs.

A centralized device broadcasts sound, together with radiosignal containing its lo-

cation. Each sensor can estimate its distance to the location of the centralized device
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using Time Difference of Arrival (TDOA) approach upon receiving the sound and

radio signal. The centralized device moves to three different noncollinear locations,

so that each sensor obtains distances to three noncollinearpoints and localizes itself

using trilateration.

Localization over multihop wireless connections: In MWNs, nodes are often

multiple hops away from anchor nodes, therefore the location uncertainty is in-

creased and localization is even more challenging. A numberof interesting local-

ization algorithms have been proposed for such networks. Toavoid error accumula-

tion, majority of the algorithms infer locations of nodes byformulating a constraint

problem and solving it using some commonly used techniques.One key difference

between the algorithms is how the location is represented,e.g.with a single point

or a region. Location-dependent applications usually require single point repre-

sentation as the final location estimation. But the intermediate estimations during

localization process do not always have to be single points.Different algorithms

may have different representations.

In [92], Savvideset al. develop a distributed localization approach that it-

erates through a two-phase process: ranging and estimation. During the ranging

phase, each node estimates its distance to its neighbors, whereas during the estima-

tion phase, nodes use the ranging information and their neighbors whose positions

have been determined to estimate their own locations. In a followup work [93],

the authors enhance the previous approach by formulating the problem as a global

non-linear optimization problem. This limits error accumulation arising in [92].
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In [96], Shanget al. propose to use multi-dimensional scaling (MDS) to de-

termine location in a centralized fashion. MDS is a technique that can calculate co-

ordinates from a matrix of pairwise distances. The localization accuracy is limited

partly because it cannot handle violation of triangulation(especially for irregular-

shaped networks). Later they develop a distributed MDS-based approach in [95].

It is shown to out-perform the centralized version in irregular-shaped networks by

ignoring the distance information among nodes that are far apart.

In [17], Costaet al. introduce a distributed weighted-MDS algorithm, dwMDS,

for localization in WSNs. It assigns larger weights to more accurate range measure-

ments. Similar to [95], it essentially ignores distance estimation between out-of-

range sensors by giving them 0 weight. In dwMDS, each node adaptively updates

its location estimation by minimizing a local cost function.

In [9], Biswaset al. relax the localization problem to a semidefinite program

(SDP) problem, and solve the problem using standard SDP techniques. To deal with

noisy measurements, the authors develop two extensions to the basic SDP problem:

a maximum likelihood based formulation and an interval based formulation.

In [71], Moore et al. present algorithms that use robust quadrilateral for

localization. Their approach finds sets of four nodes that are fully connected, and

localizes the fourth node based on the positions of the otherthree nodes. To prevent

error accumulation, the four-node set needs to satisfy robust quadrilateral condi-

tions. This improves accuracy at the cost of leaving some nodes unlocalized.

In [42], Hu et al. propose a sequential Monte Carlo localization (MCL)
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method to enhance the accuracy of localization by exploiting mobility. In particu-

lar, the approach leverages mobility history to predict possible locations based on

previous location samples and current movement, and uses the new connectivity

information to eliminate inconsistent location samples.

In [91], Rudafshaniet al. propose MSL and MSL* to improve and gen-

eralize MCL. The sampling procedure in MCL is modified to workin static net-

works. Each node only uses information from neighbors with better location es-

timates Convergence time and execution time of MSL and MSL* are faster than

MCL, therefore the accuracy is improved for mobile networks.

In [65], Li et al. present REP for localization in anisotropic WSNs where

holes exist. The basic idea is to better estimate distance between two sensors by ren-

dering a shortest path around intermediate holes. Each sensor measures its distances

to three seeds whose locations are known, then infers its location by trilateration.

Unlike most of the previous approaches, which represent inferred locations

using points, [97] and [35] present approaches that represent locations as regions.

In [97], the whole space is divided into a rectangular grid ofsmall squares. Location

estimates are represented by a set of squares calculated from location constraints. In

[35], regions are represented with Bezier curves. Such a representation is shown to

significantly improve accuracy. Motivated by these approaches, in this dissertation

we also use region-based representation. Our approach is different in two ways.

First, we represent regions with dynamic mesh cells with adaptive sizes. Second,

we derive probability distribution over the cells. It achieves high accuracy and

robustness without incurring significant computation cost.
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Lastly, a set of probabilistic localization algorithms arepresented in [77,78,

85]. For each sensor in the network, they derive a probability distribution over the

whole deployment area. Each position in the area is associated with a probability

of the sensor being placed at that position. Eventually, thelocation of a sensor is

estimated as the position with highest probability. These algorithms assume normal

distribution of RSS or AOA measurements, and calculate probability distributions

using distance or angle constraints. Different from them, our approach does not

assume any distribution of RSS or AOA. In its basic form, it needs only connectiv-

ity information. It calculates probability distribution for discrete cells and reduces

computation cost by adaptively controlling the cell sizes.

Analysis of limits on localization accuracy: In addition to developing novel lo-

calization algorithms, researchers have also analyzed thefundamental limits on lo-

calization algorithms. The limits can be about the accuracyof location estimations,

or whether a node can even be localizable.

The authors in [23] compare a series of localization algorithms, and find

that using commodity 802.11 technology over a range of algorithms, approaches

and environments, it is expected to have a median localization error of 10 feet and

97th percentile error of 30 feet. They conclude that these limitations are fundamen-

tal and unlikely to be significantly improved without fundamentally more detailed

environmental models or additional localization infrastructure. It points out that

leveraging additional information is necessary in order toimprove the accuracy.

In [33], Goldenberget al. study partially localizable networks, in which
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some nodes cannot be uniquely localized due to lack of location constraints. The

authors identify a sufficient condition for a node to be uniquely localizable, and

develop algorithms to determine which nodes are uniquely localizable and which

are not.

Node placement: Complementary to localization algorithms, node placemental-

gorithms have also been designed to reduce location ambiguity.

In [87] Ray et al. apply the theory of identifying codes to determine the

placement of sensors so that each position is uniquely identified by a set of sensors

that it can directly communicate with. The authors further extend their algorithms

to tolerate errors (e.g., sensor failures).

In [24], Erenet al. show that a network has a unique localization if and

only if its corresponding grounded graph is generally globally rigid. Applying

graph-rigidity literature, they develop approaches to constructing uniquely localiz-

able networks, and study the computation complexity of localization. Node place-

ment algorithms are complementary to localization algorithms. The localization

algorithms should be applicable even when we do not have the flexibility to alter

the graph to make it uniquely localizable.

2.3 Probabilistic Dynamic Mesh-Based Localization

As mentioned in the previous section, an important characteristic of various

localization approaches is how the estimated location is represented. To achieve

high accuracy and robustness, we adopt a region-based representation, where an
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estimated location is represented as a region that consistsof all points satisfying the

location constraints extracted from the underlying network. We further improve the

existing work [29,35] by deriving a probability distribution over the region to reflect

the likelihood of the true position. Such probability distribution, combined with

an explicitly represented region, provides much richer location information than

a single position, and allows us to achieve higher accuracy in face of insufficient

information and measurement errors.

Below we first present a probabilistic region-based localization approach.

Then we describe two techniques to improve the efficiency of the approach. The

first one combines multiple horizontal (or vertical) cells (in an estimated region)

into a single segment, which reduces computation cost at theexpense of slightly

higher error. The second technique is based on a dynamic mesh, where mesh cells

are dynamically adjusted according to the size and shape of the region. It can

achieve both efficiency and accuracy.

2.3.1 Probabilistic Region-Based Localization

The probabilistic region-based localization proceeds as follows. First, ev-

ery node’s location is initialized to be the entire space. Then each node extracts

location constraints by measuring the connectivity of the underlying network, and

propagates these constraints to nodes within a certain hopsaway. (We use 3 hops

in our evaluation.) If angle and received signal strength index (RSSI) measure-

ments are available, they can be used to extract location constraints and processed

in a similar way. Based on the constraints reported by other nodes and its own
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observation, a node estimates its new location by pruning out the sub-regions that

are inconsistent with the constraints. For the sub-regionsthat are consistent with

the constraints, a node further computes a probability distribution over them. The

approach is run in a distributed way.

Extracting location constraints: To estimate its location, a node first extracts

location constraints from the underlying network. Examples of location constraints

include “the distance between nodei and nodej is at mostd” (also called distance

constraints), and “the angle between lineij and the direction of North is within

[θ1, θ2]” (also called angle constraints). Such location constraints can be obtained

by measuring network connectivity and angle-of-arrival. In this section, we only

consider distance constraints. We will consider angle constraints in Section 2.5.1.

To handle irregular wireless propagation, each wireless node is associated

with two separate radii:R andr (R ≥ r), whereR denotes the maximum transmis-

sion range the node can reach, andr denotes the minimum transmission range the

node can reach [35].R 6= r arises when the signal propagation is not the same in

all directions. When nodei can hear nodej, we obtain a constraint:dij ≤ Rj. This

is a positive constraint. When nodei cannot hear nodej, we obtain a constraint:

dij > rj . This is anegative constraint.

Next we introduce some more notations. LetLCji denote a location con-

straint for nodej using nodei as a reference point. LetPOS() denote a positive

constraint, andNEG() denote a negative constraint. LetSi andSj be the estimated

region of nodei andj, respectively.
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If nodej can hear nodei, we obtain a positive constraint:dij ≤ R. Then

the estimated region of nodej can be expressed as:

Sj = POS(Si, R) = {pj|∃ pi ∈ Si, d(pi, pj) ≤ R},

whered(pi, pj) is the distance between two pointspi andpj. This region is a union

of discs that are centered at each point insideSi with radiusR. Similarly if node

j cannot hear nodei, we derive a negative constraint, and the region of nodej is

estimated to be

Sj = NEG(Si, r) = {pj|∃ pi ∈ Si, d(pi, pj) > r}.

If there are multiple constraints derived (e.g., by using multiple reference

points), the final output is the intersection of the regions from all these constraints.

Note that while we use connectivity information to extract location constraints, our

approach can easily incorporate other information, such asangle estimation and

layout maps, which will be described in Section 2.5.1.

Computing probability: Next we describe how each nodei derives a probability

distributionPi over its regionSi. To do so, we partition the whole space into (small)

cells, where each cell is a square with a fixed size. A cell is the smallest unit for

which we compute probability. Lets be a cell.Pi(s) is the probability that nodei

is in s. Each location constraint gives a probability distribution over an estimated

region. The final relative probability of each cell is the product of the probabilities

derived from all constraints (including both positive and negative constraints). We

further derive the absolute probability by normalizing therelative probabilities.
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Below we show how to derive a probability distribution from one location

constraint. Since the probability computation using positive and negative connec-

tivity information is similar, we illustrate the idea by considering only a positive

connectivity constraint.

First we describe how to compute probabilityPi(s) using an anchor node,

a, whose location is known, as a reference point. Using network connectivity, we

obtain a distance constraint froma to i asdia ≤ k ∗ R, wherek is the number of

hops betweena andi. ThereforeSi is the disc centered ata with radiusk ∗R. Since

only connectivity information is available, we assume nodei’s location is uniformly

distributed inside the circle. Therefore, for a cellg,

Pi(g) =

{

0 if g is outside the circle,

1/c1 otherwise,

wherec1 is the number of cells inside the circle. (Note that application of negative

connectivity information will change the above probability distribution. For exam-

ple, if a node is 2 hop away froma, the fact that it is nota’s immediate neighbor

allows us to prune out the area of a circle centered ata with radiusr.) To avoid leav-

ing out the true position, a cell is considered “inside” the circle as long as it overlaps

with the circle. Consequently,Si =
⋃

(g) is not exactly the region enclosed by the

circle, but the union of all cells considered “inside” the circle. Therefore1/c1 is an

approximation since some cells are partially inside the circle. The accuracy of such

approximation depends on the cell size. Smaller cell sizes reduce the approximation

error at the cost of increasing computation and storage cost.

Next we describe how to compute probabilityPi(s) using a non-anchor node
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(whose location is not known in advance) as a reference point. Consider a node

i’s neighborj. For a celluj ⊂ Sj , the relative magnitude of its probability is

determined by the probability of subregion inSi that satisfiesd(ui, uj) ≤ R. This

results in the following:

Pj(uj) = β ·
∑

ui⊂d(ui,uj)≤R Pi(ui)
∑

ui⊂Si
Pi(ui)

(2.1)

= β ·
∑

ui⊂d(ui,uj)≤R

Pi(ui) (2.2)

whereβ is a normalization factor so that
∑

uj
Pj(uj) = 1.

Figure 2.1 shows how a node’s estimated location converges.After the first

iteration, the region is approximately a circle since this node is a neighbor of an

anchor. The probability distribution is uniform over all cells. After the second iter-

ation, the estimated region is refined, with the updated probability distribution and

smaller area, by leveraging the constraints from the anchors that are 2 hops away.

After the third iteration, the region is reduced further (although the amount of re-

duction is less than in the second iteration because the constraints from the 3-hop

neighbors have less impact on the region than constraints from the 2-hop neigh-

bors). As it shows, the cell containing the true position (marked as the shaded cell)

and its surrounding cells have significantly higher probabilities than the remaining

region.

2.3.2 Enhancing Efficiency

So far we consider using static grids. In this case, the computation cost is

determined by the number of cells. If a node’s location has high uncertainty due
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(c) Snapshot after 3 iterations.

Figure 2.1: Snapshots of a node’s estimated location for thefirst three iterations.
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to lack of sufficient location constraints, its estimated region is large, resulting in a

large number of cells and hence high computation and storagecosts. In this section,

we describe two techniques to improve the efficiency of the above localization ap-

proach. The first approach reduces the cost by combining horizontally (vertically)

contiguous cells into a row (column) segment. The second approach dynamically

adapts the cell size so that coarse-grained cells are used when the estimated region

is large and fine-grained cells are used when the estimated region is small.

Segment-based localization: One way to reduce the complexity is to combine

horizontally (vertically) contiguous cells into a row (column) segment. Since com-

putation using row segments is similar as using column segments, in the following

description we focus on using row segments. The width of eachsegment is fixed,

but the length is variable. A row segment is specified by a 3-tuple, (y, x1, x2),

where(x1, y) is the left end and(x2, y) is the right end. Each estimated region is

represented as a set of row segments. We want to calculate theprobability of each

row segment containing the true position. Now the complexity is determined by the

number of row segments.

Suppose we obtain nodei’s estimated region and the probability distribution

over the region. We calculate its neighborj’s estimated region and probability

distribution as follows. The location constraintLCji is dji ≤ R. Hence,Sj =

POS(Si, R). Let ui denote a row segment ofi, anduj denote a row segment

of j. The general formula to derive probability is similar to (2.1). Since a row

segment may be significantly larger than a cell, treating partial overlap as complete
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overlap may result in high error. Therefore we further calculate the fraction of a

row segment that satisfies location constraints.

�����������
�����������
�����������
�����������

ujR

ui

POS(uj,R)

��������������
��������������
��������������
��������������

Figure 2.2: Example of Using Segments

Figure 2.2 shows an example.uj is a row segment inSj. POS(uj, R) is

the region expanded fromuj by R. ui is a row segment inSi. ui is partially in

POS(uj, R). When calculatingPj(uj), we need to calculate the portion ofui that

is insidePOS(uj, R).

Let vi = ui ∩ POS(uj, R). Let A(S) denote regionS’s size. Assuming

uniform distribution within a segment, we have,

Pj(uj) = γ ·
∑

ui⊂Si

A(vi)

A(ui)
· Pi(ui), (2.3)

whereγ is a normalization factor.

Probabilistic dynamic mesh-based localization (PDM): Combining consecu-

tive cells in one dimension can significantly reduce computation and storage costs.

On the other hand, its accuracy depends on how accurately a uniform distribution

captures the actual probability distribution over the set of combined cells. When the
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actual distribution significantly deviates from a uniform distribution, localization

accuracy will decrease. To achieve both high accuracy and low cost, we propose an

alternative approach that dynamically adjusts the cell size as needed.

At a high level, we use coarse-grained cells when the estimated region is

large, and use fine-grained cells when the estimated region is small. To achieve

this goal, we leverage mesh generation work developed in thearea of computer

graphics. We use DistMesh [21,81] because it can efficientlygenerate high-quality

meshes. DistMesh uses asigned distance functiond(x, y) to specify a region. The

absolute value ofd(x, y) is the minimum distance from(x, y) to the boundary of

the region, where a negative distance means it is inside the region and a positive

distance means it is outside the region. It generates meshesusing Delaunay trian-

gulation, and optimizes node locations using a force-basedsmoothing procedure as

described in [21,81]. It also provides a parameter to control the sizes of triangles.

We apply DistMesh to localize wireless nodes as follows. Each node rep-

resents its estimated region using a set of triangular cells. A triangular cell is the

smallest unit for which we compute a probability. We controlthe mesh structure

so that each triangle has similar sizes in both dimensions, and the sizes of triangles

are adaptive according to the size of the region. It is straightforward to write dis-

tance functions for distance constraints and angle constraints. Each node calculates

its region based on the measured distance constraints. Given a combined distance

function from all location constraints, DistMesh can generate a set of triangular

meshes to represent the region that satisfies the location constraints.

Figure 2.3 illustrates two examples of triangular mesh generated by Distmesh.
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Figure 2.3(a) shows the mesh cells for a circle. Figure 2.3(b) shows the mesh cell

that represents the estimated region for the same node as in Figure 2.1, resulting

from subtracting three circles from one circle.

−1 0 1

−0.5

0

0.5

(a) Mesh cells for a circle.

10 20 30

25

30

35

40
true
position

(b) Mesh cells for a node’s location.

Figure 2.3: Triangular mesh generated by Distmesh.

After obtaining its estimated region, a node can derive the probability dis-

tribution over the triangles (inside the region) in a similar way as in static grids.

Suppose we know the region and probability distribution over the triangles of a

given nodei. A neighborj of nodei has location constraintdji ≤ R, and calculates
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its regionSj as follows. Letti denote a triangle inSi, andtj denote a triangle in

Sj . We derive the probability associated withtj by first computing the fraction ofti

satisfying the location constraint, and then weighting thefraction by the probability

of nodei residing inti.

Figure 2.4 shows an example of deriving probability distribution. tj is a

triangle inSj . POS(tj, R) is the region expanded fromtj by R. ti is a triangle in

Si. ti is partially inPOS(tj, R). When calculatingPj(tj), we need to determine

what fraction ofti is insidePOS(tj, R).
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Figure 2.4: Example of mesh model.

Let t′i = ti ∩ POS(tj, R). Assuming uniform distribution within a triangle,

we have

Pj(tj) = γ ·
∑

ti⊂Si

A(t′i)

A(ti)
· Pi(ti), (2.4)

whereγ is a normalization factor.
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2.4 Performance Evaluation

We evaluate localization schemes using a methodology similar to [96] and

[95]. We uniformly place a set of nodes over a 2-dimensional space. We compare

different localization schemes while varying the number ofnodes (N), the maxi-

mum transmission range (R), and the fraction of anchor nodes (A). In this section,

our evaluation uses one power level. In section 2.5.3.1, we will further study the

effect of power control by varying the number of power levels.

We quantify the localization error using the same method as in [35]. For

both Sextant and our approach, we use Monte Carlo sampling tosample 1000 points

in a node’s estimated region, and pick the one that minimizesthe average error to

other sampled points inside the region. The localization error is then calculated as

the distance from this point to the node’s true position.

However, there is a difference in choosing sample points between Sextant

and our approach. Sextant uniformly samples points inside aregion, whereas in our

approach the number of sample points in a cell is proportional to its probability.

As we will show, the probabilistic-based approach can significantly improve the

localization accuracy.

Effects of the number of nodes Figure 2.5 shows the cumulative distribution of

position errors forN = 50, R = 12.5, andA = 10%. The size of the space is

50x50.

We make the following observations. First, PDM significantly out-performs

Sextant. For example, the percentage of nodes achieving≤ 30% ∗ R = 3.75 errors
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Figure 2.5: Probability distribution improves localization accuracy (50 nodes)

in dynamic mesh is60% compared to36% in Sextant. This is because in Sextant

different points inside a region are treated equally, whereas PDM leverages the

derived probability distribution over the region. Second,as we would expect, the

static grid approach using 0.5x0.5 grids yields smaller errors than using 2x2 grids.

Third, the dynamic mesh approach performs better than the static grid approach

with 2x2 grids at the lower end of the errors (≤ 10%, 20%, 30%∗R errors). Fourth,

combining cells into segments with width 0.5 (denoted as “Segment (width=0.5)”

in the figure) yields slightly larger errors than using static grids or dynamic meshes,

but still out-performs Sextant by a significant amount.

Table 2.1 summarizes average running time of different algorithms. As we
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Sextant Grid-2 Grid-0.5 PDM Segment
1.98 1.225 56.67 6.82 3.66

Table 2.1: Average running time in seconds using a 1200 MHz UltraSPARC-III+
processor with 16GB memory.

can see, the running time of static grid approach decreases with increasing grid size.

When the grid size is as large as 2x2, the static grid approachtakes less time than

Sextant. In all other three schemes, the running time is longer than Sextant. (Note

that Sextant code is from its original authors and it is implemented in JAVA, while

all of our approaches are implemented in MATLAB. We expect the running time

of our approaches can be significantly improved by converting the MATLAB code

into C or JAVA.)

For the rest of evaluation, we choose PDM as a representativeof our proba-

bilistic approaches.

Figure 2.6 shows the performance for networks with 100 nodesin a space of

size 70x70. Similar to networks with 50 nodes, PDM achieves higher accuracy than

Sextant. For example, the percentage of nodes achieving≤ 30% ∗ R = 3.75 errors

is 40% in Sextant, and is67% in PDM. On average, Sextant takes 2.14 seconds per

node to compute, and PDM takes 10.23 seconds per node to compute.

Effects of transmission range Transmission rangeR determines network den-

sity. More neighbors mean more location constraints, whichusually result in higher

localization accuracy. We varyR to obtain different network densities shown in Ta-

ble 2.2. For simplicity, we assume the wireless propagationis regular (i.e. R = r)
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Figure 2.6: Probability distribution improves localization accuracy (100 nodes)

in our simulation. It is not difficult to generalize toR 6= r cases.

N Space R = 10 R = 12.5 R = 15
50 50x50 6.0612 8.9592 11.28
100 70x70 6.0562 8.58 11.28

Table 2.2: Average node degrees under different transmission ranges.

As described in [50], 6 is a “magic” average node degree for a wireless

network to be connected. So we choose the shortest range to be10, which gives an

average node degree of 6.

Figure 2.7 shows the results for different transmission ranges, while fixing

A = 10%. The accuracy results of 50-node (not shown) is similar. Again, PDM

consistently outperforms Sextant. As we would expect, the accuracy is higher when
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Figure 2.7: Effects of Transmission Range (100 nodes)

the transmission range is larger, which results in higher network density. Since the

transmission range is determined by transmission power, there is a tradeoff between

energy-efficiency and localization accuracy.

Effects of the fraction of anchor nodes Next, we study how the fraction of an-

chor nodes,A, affects localization accuracy. In our evaluation,R = 12.5. Fig-

ure 2.8 shows the localization accuracy of 100-node networks as we vary the anchor

fraction from 5% to 20%. The results of 50-node networks are similar. As before,

PDM yields lower error than Sextant. In addition, we find thatthe anchor fraction

significantly affects localization accuracy. The more anchor nodes, the higher local-
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ization accuracy. This is consistent with our expectation,because 1-hop neighbors

of anchor nodes can be localized more accurately than nodes multiple hops away

from anchor nodes due to smaller uncertainty. As shown in Figure 2.8, the increase

in localization accuracy is significant as the anchor fraction increases from 5% to

10%. A further increase in the anchor fraction leads to more moderate increase

in the accuracy. Therefore we use10% as the anchor fraction for the remaining

evaluation.
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Figure 2.8: Effects of anchor nodes fraction (100 nodes)

Summary In this section, we compare different localization algorithms. Our re-

sults show that probabilistic region-based localization schemes using static grids,
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dynamic meshes, and segments of grids, achieve higher localization accuracy than

Sextant. In addition, PDM provides a reasonable balance between accuracy and

computation cost.

2.5 Two Extensions

In this section, we extend our approach in two directions. First, to further

improve the localization performance, we propose to extract and take advantage of

additional information by (i) using power control, (ii) using carrier-sense range as

another reference distance besides communication range, (iii) incorporating physi-

cal layout, and (iv) exploiting more powerful anchor nodes.The additional informa-

tion is useful to many localization algorithms including ours. Second, we enhance

the robustness of our approach against erroneous measurement by tolerating cer-

tain degree of inconsistency among location constraints. Finally, we evaluate the

effectiveness of these extensions.

2.5.1 Extract and Leverage Additional Information

The accuracy of a localization system highly depends on the amount of in-

formation available. We propose several ways to obtain additional information.

They can be used separately or jointly, and can be applied to different localization

algorithms. Note that while this is not the first approach that uses additional in-

formation besides network connectivity to infer location,several of the techniques

presented here are novel. In addition, we evaluate and compare the effects of the

additional information.
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Using power control: Power control enables wireless nodes to obtain ad-

ditional information in the following way. Suppose each power levelpk has cor-

responding maximum and minimum transmission rangeR(pk) andr(pk). By ad-

justing the transmission power, if a nodei finds out that it can communicate with

another nodej at power levelpk, but cannot communicate at power levelpk−1, the

distance betweeni and j should be betweenR(pk) andr(pk−1). This additional

information makes range estimation more accurate, and can be easily incorporated

into any localization algorithm. As we would expect, a larger number of power

levels provides more information and improves localization accuracy. Power con-

trol is an interesting and practical way for obtaining additional information since

power control is readily available in commercial wireless cards. In addition, it only

requires nodes to obtain network connectivity information, and does not require

signal strength measurements or additional hardware.

Using carrier-sense range:Many existing localization algorithms rely on

network connectivity information for location estimation. This gives us information

as to whether a node is within or outside the communication range of another node.

However we do not have further information about the nodes that are outside the

communication range.

We make an interesting observation: in addition to communication range,

carrier-sense range can also be used as a reference for distance estimation. For ex-

ample, if two nodes cannot sense each other’s carrier, they are outside each other’s

carrier-sense range. This type of information is not available if we only use net-

work connectivity, since the carrier-sense range is typically larger than the commu-
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nication range. LetR andRcarrier denote communication range and carrier-sense

range, respectively. If two nodes are outside communication range but can sense

each other’s carrier, their distance should be within the range [R, Rcarrier]; if two

nodes cannot sense each other’s carrier, their distance is larger thanRcarrier.

To determine whether two nodes can sense each other’s carrier, we can mea-

sure whether these nodes can simultaneously broadcast [2].More specifically, we

measure the broadcast rate from the two senders when they areactive simultane-

ously, and denote it asTtogether. We also measure the broadcast rate when the two

senders are active separately, and denote it asTseparate. If Ttogether

Tseparate
is close to 1, it

means that the two nodes do not sense each other’s carrier; otherwise they do.

As with power control, we extract more precise distance information using

the carrier-sense range, and it can be applied to different localization schemes.

Using physical layout: In some applications, we may have a rough idea of

physical layout of wireless nodes. For example, in residential mesh networks [89],

we know that wireless nodes are deployed at different houses, and we also have

a neighborhood layout map. The map provides additional information for us to

narrow down the location. Since a node can only be located at one of the houses, its

final estimated location should be the intersection of its estimated region (without

considering the physical layout) and the regions occupied by the houses.

Using more powerful anchor nodes:As the previous work shows, angle

information is valuable for location estimation. However,obtaining angle informa-

tion often requires more expensive hardware (e.g., directional antennas or additional
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transmitters like ultrasound). In order to achieve both high accuracy and low cost, a

promising approach is to use a combination of more powerful nodes and less power-

ful nodes. For example, only the anchor nodes are equipped with powerful devices

for more detailed measurement, whereas the remaining nodesuse cheap devices as

usual. An interesting question is how much benefit such powerful anchor nodes of-

fer. In this chapter, we study the following type of powerfulanchor nodes: anchor

nodes that are equipped with directional antennas for measuring angle information

towards its immediate neighbors. We evaluate localizationaccuracy as we vary the

fraction of anchor nodes.

2.5.2 Enhance Robustness

A node estimates its location by finding regions that satisfya set of location

constraints. Location constraints are usually obtained bymeasuring distances or

angles between nodes. However, such measurements can be erroneous, and in some

cases even lead toinconsistentlocation constraints. A set of location constraints are

inconsistentif there is no point that can satisfy all these constraints.

We propose a technique on top of our probabilistic region-based approach

to achieve robustness against inconsistent location constraints. We leverage the fact

that majority of location measurements are consistent; andonly a few constraints

may contain significant errors and result in inconsistency.Therefore a mesh cell

belongs to a node’s estimated region as long as it satisfies most of the constraints.

In our evaluation, we use 80% as a threshold (i.e., a mesh cell is considered to

belong to a node’s estimated region if it satisfies at least 80% of the constraints for
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that node). As part of our future work, we plan to choose the threshold adaptively.

Our robust localization proceeds in the following three steps. First, as be-

fore, every node propagates location constraints to all nodes within 3 hops away

(i.e. TTL=3). Second, each nodei calculates its own region based on the location

constraints from other nodes. Location constraints from a nodej determine a re-

gion Sij for i. Unlike in Section 2.3,i does not calculate its region asSi = ∩jSij.

Instead,Si is calculated as the set of mesh cellsui such thatui satisfies at least 80%

of the constraints. Finally, each node calculates the probability distribution over all

mesh cells within its estimated region. This step is similarto what we describe in

Section 2.3.

2.5.3 Performance Evaluation of Extensions

In this section, we evaluate the performance benefits of additional informa-

tion and robustness enhancement.

2.5.3.1 Evaluation of Leveraging Additional Information

In this section, we study the effects of leveraging additional information.

First, we examine the effect of power control by varying the number of power levels

PL that a node can use for its transmission. Table 2.3 lists the transmission power

at different levels, whereP is the maximum transmission power. Note thatPL = 5

corresponds to or approximates several commercial wireless cards (e.g., Netgear

WAG511 and Cisco Aironet 350 series). Next we examine the effect of carrier-

sense range-based constraints by varyingRcarrier = 1.5R, 2R, 2.5R, 3R, where
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R is communication range. Table 2.4 summarizes the notation we use. Then we

evaluate the performance benefit from incorporating a physical layout map. Finally,

we examine the effect of using powerful anchors that have angle information. We

consider three levels of angle measurement errors: large errors within [−20, 20]

degrees, medium errors within[−10, 10] degrees and small errors within[−5, 5]

degrees. These values are consistent with commercial directional antennas.

PL Fraction of maximum transmission powerP
1 100%
2 25%,100%
3 6.25%,25%,100%
5 6.25%,12.5%,25%,50%,100%
10 6.25%,10%,12.5%,20%,25%,35%,50%,65%,

80%,100%

Table 2.3: Transmission power for different power levels

N the number of nodes
R transmission range
A the fraction of anchor nodes
PL the number of power levels
Rcarrier carrier-sense range

Table 2.4: Notation used in performance evaluation.

Effects of power control When only connectivity information is available, the

distance measurement is binary–eitherd ≤ R or d > R. By adjusting the trans-

mission power level, a node can extract more accurate distance constraints in the

above form. As shown in Figure 2.9, the accuracy improves with an increasing

number of power levels. For example, 20% nodes achieve position error within
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10% ∗ R = 1.25 when 1 power level is used. In comparison, 32%, 35%, 50%,

and 65% nodes achieve similar errors when the number of powerlevels is 2, 3, 5,

and 10, respectively. This demonstrates that power controlis effective in improving

localization accuracy.
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Figure 2.9: Effects of power control (100 nodes).

Effects of carrier sense constraint Besides power control, carrier-sense range

can also help to extract more accurate distance constraints. As shown in Figure 2.10,

compared with the base case without carrier sense information, constraints derived

using carrier-sense ranges improve localization accuracyby a considerable amount.

As the carrier-sense range increases, the negative constraints (i.e., d > Rcarrier)
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become tighter, and the positive constraints (i.e., d < Rcarrier) become looser. In-

terestingly,Rcarrier = 2 ∗R yields the highest accuracy among all the carrier-sense

ranges considered. This suggests that the positive and negative constraints extracted

using2 ∗ R are especially effective under the scenarios we consider.
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Figure 2.10: Effects of carrier sense constraints (100 nodes).

Effects of map constraint Next we study the performance gain from a layout

map. In our evaluation, we obtain a real neighborhood map, which contains the

coordinates of houses. We select 56 houses from the map over a1400m x 700m

space. Since there is no house size information, we generatethe regions occupied

by the houses as follows. Each house is a square and has the same size. A house is
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centered at its coordinate, and its size,hsize, is determined based on the minimum

distance between any pair of houses,dmin. In the localization process, each node

derives its region and probability distribution based on the constraints imposed by

the map (i.e., a node can only be inside a house), as well as the location constraints

from other nodes. We use transmission range of 150 meters, which gives an average

node degree of 6.39.
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Figure 2.11: Effects of a physical layout.

As shown in Figure 2.11, a layout map significantly improves localization

accuracy. In addition, the smaller house size, the higher localization accuracy. This

is what we would expect. Because a node can only reside in a house, the location

constraints imposed by the map is tighter for smaller houses. Nevertheless, even

55



www.manaraa.com

whenhsize = dmin, localization accuracy is still significantly higher than without

the layout map.

Effects of powerful anchors Finally, we examine how anchor nodes with an-

gle measurement affect the accuracy of localization. We usethree levels of angle

measurement errors:[−20, 20] degrees,[−10, 10] degrees and[−5, 5] degrees. An

estimated angle is then the true angle plus noise uniformly distributed within the

error intervals. Figures 2.12 summarizes the results.
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Figure 2.12: Effects of angle information (100 nodes).

We make the following observations. First, angle information helps to

decrease the localization error significantly. Second, even when the angle mea-
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surement contains errors of[−20, 20] degrees, localization accuracy is still signif-

icantly higher than the accuracy achieved without angle information. Compared

with [−5, 5] degrees of angle measurement error, its accuracy is slightly lower at

the low end of position errors, and comparable for the remaining position errors.

Summary In this section, we study the effect of additional information, including

using power control, carrier-sense range-based constraints, a layout map, and an-

gle measurements from anchor nodes. Our results demonstrate that the additional

information is effective in significantly improving localization accuracy.

2.5.3.2 Evaluation of Robustness Enhancement

In this section, we evaluate the robustness of our extended localization al-

gorithms. First we consider the case where the transmissionrange information

is inaccurate. More specifically, each node’s true communication range (R) is

R = Rest + Rerror, whereRerror is a positive or negative range estimation error,

andRest is the communication range that we have estimated.Rerror arises from the

difference in transceivers’ properties and environmentaleffects. While one may try

to reduceRerror by individually calibrating each node (e.g., obtaining conservative

minimum and maximum communication ranges), such calibration is costly. More-

over even with calibration, errors cannot be completely eliminated due to changing

environmental effects.

As shown in Figure 2.13, with robustness enhancement, the localization

algorithm maintains high accuracy when the communication ranges contain up to
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Figure 2.13: Effects of inaccurate communication range (N = 50, R = 12.5,
A = 10%, PL = 1).

20%∗R errors. The accuracy is lower whenRerror increases up to40%∗R, but still

all nodes can be localized, with around 60% nodes achieving within R/2 = 6.25

position error.

Next we consider errors arising from malicious nodes. In ourevaluation,

we randomly select a few nodes as malicious nodes. Such a nodepretends to be

at a randomly generated location. It calculates a region of acircle centered at the

false location with radiusR, and then transmits this region as a false constraint to

its neighbors. Figure 2.14 shows the effects of malicious nodes. There are two

sets of curves, corresponding to the results of position errors withinR/2 and within
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R. “Grid-2” and “Robust Grid-2” curves represent the resultsfrom using fixed 2x2

rectangular cells with and without the additional robustness enhancement, respec-

tively. After introducing such malicious nodes, not all nodes can be localized due to

potentially inconsistent constraints. For the nodes that have inconsistent constraints

and cannot be localized, their localization error is considered larger thanR.
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Figure 2.14: Effects of malicious nodes (N = 50, R = 12.5, A = 10%, PL = 1).

As Figure 2.14 shows, even when the fraction of malicious nodes is only

10%, the percentage of nodes with position errors≤ R/2 = 6.25 drops as much as

30% under both Sextant and Grid-2. In comparison, with the additional robustness

enhancement, the accuracy reduction under the “Robust Grid-2” is small especially

when the fraction of malicious nodes is within 10% (only 10% reduction). More-
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over, even when 30% nodes are malicious, majority of nodes can still be localized

within errors ofR under “Robust Grid-2”. This demonstrates the effectiveness of

our robustness enhancement.

Summary Our evaluation results show that the robustness enhancement is effec-

tive. The enhancement helps maintain high localization accuracy even when there

are20% ∗ R range errors or10% malicious nodes.
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Chapter 3

A General Model of Wireless Interference

3.1 Overview

Interference is fundamental to wireless networks. Due to the broadcast na-

ture of the medium, transmissions from one sender interferewith the transmission

and reception capabilities of other nodes. Understanding and managing interference

is essential to the performance of wireless networks. For instance, it can directly

benefit channel assignment [70, 90], transmit power control[47], routing [18, 22],

transport protocols [64], and network diagnosis [15].

Unfortunately, the state of art in estimating the impact of interference is

rather primitive. Much of the existing work is based on simple, abstract models of

radio propagation (e.g., the interference range is twice the communication range).

While such models may predict the asymptotic behavior, theycan be highly inac-

curate in any given network [2,53].

This has prompted researchers to devise models that are seeded using mea-

surements from the underlying network [2, 88]. These measurements are usually

collected in a simple configuration, such as each node sending by itself. They are

then used to predict the impact of interference in more complex configurations such

as multiple transmitting nodes. This is a promising direction because it makes no
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assumptions about the nature of radio propagation which hasproven difficult to

model in real environments.

However, the existing measurement-based models are quite limited. They

do not apply to configurations that have more than two sendersor two flows, have

unicast traffic, or have senders with finite demands. The onlyway today to pre-

dict network behavior under these general configurations isto actually measure it.

(Indeed, most experimental research today is forced to adopt this methodology.)

But measurement alone is insufficient because it lacks predictive power and

scalability. While it can accurately predict the performance of the measured con-

figuration, it cannot predict performance for other configurations. To optimize net-

work performance, one often needs to predict the performance of many alternative

configurations. Since measuring all possible configurations is not feasible, it is

necessary to develop a model to estimate network performance under arbitrary con-

figurations (e.g., to perform what-if analysis).

In this chapter, we develop a general model of interference in heterogeneous

multihop wireless networks with asymmetric link quality and non-binary interfer-

ence relationships. Our model takes as input traffic demand and received signal

strength (RSS) between pairs of nodes, which requires onlyO(N) measurements

in anN-node network. It then estimates the rate at which each sender will transmit

and the rate at which each receiver will successfully receive packets.

Compared to existing measurement-based models [2, 88], we advance the

state of art in three important ways. First, we go beyond the case of two senders
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(or flows) to an arbitrary number of senders. This is challenging due to complex

interactions among nodes. For instance, the sending rate ofnodes depends on those

of all other nodes, which in turn depend on the sending rate ofs itself. Second, we

go beyond the case of broadcast transmissions. Unicast transmissions, which have

both a data packet and an ACK, are more common in wireless networks. They intro-

duces additional complexities that stem from retransmissions, exponential backoff,

possibly asymmetric link qualities, and collisions not only among data packets but

also due to ACK packets. Third, we go beyond the case of infinite traffic demands

and model the more realistic case of finite demands. Most realnetworks have het-

erogeneous nodes with varying traffic demands.

Our model consists of three major components:

1. An N-node Markov model for capturing interactions among an arbitrary

number of senders.This is based on ap-persistent CSMA approximation

to the 802.11 distributed coordination function (DCF). It extends the previ-

ous models (e.g., [8]) to multihop wireless networks, non-saturated demands,

and asymmetric link quality.

2. A receiver model of packet-level loss rates.In particular, we find that slot-

level and packet-level losses can be quite different depending on how losses

are generated. Hidden terminals can significantly increasethe packet-level

loss rates well beyond the slot-level loss rates by spreading the lossy time

slots across many packets. Based on this observation, our model captures

both synchronized and unsynchronized packet-level collision losses.
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3. Unicast sender and receiver models.We further extend the above broadcast

sender and receiver models to capture interactions among unicast transmis-

sions. We develop two major extensions for this purpose. Thefirst extension

models the retransmission and exponential backoff at the sender side, and

the second extension models data/data, data/ACK, and ACK/ACK collision

losses at the receiver side.

We evaluate our model using simulation as well as measurements over two

wireless testbeds. Our results show that the model gives accurate prediction over a

wide range of scenarios with both broadcast and unicast traffic, with both saturated

and unsaturated demands, and across different number of senders. In simulation,

where accurate RF profile is available, our model’s root meansquare error (RMSE)

is less than 5% for both throughput and goodput predictions.In the testbeds, where

RF profile is empirically measured and subject to measurement noise and bias due

to lost packets, our model’s RMSE is less than 12%. While our model is more

general, we find that its accuracy is higher than the state-of-art model that considers

the special case of two broadcast senders with infinite demands [88].

3.2 Related Work

Considerable research has been done in the area of modeling wireless net-

works. We broadly classify the existing work into three categories: (i) modeling

single cell WLANs, (ii) general link throughput modeling, (iii) end-to-end through-

put modeling.

64



www.manaraa.com

Modeling single cell WLANs: The first category analyzes the performance of

IEEE 802.11 Distributed Coordinated Function (DCF) [8, 58]for nodes all within

communication range.

In [8], Bianchi et al. present an extremely simple Markov-chain model for

performance analysis of DCF scheme. The model assumes idealchannel condition

and finite number of hosts. It analyzes saturation throughput of the system. The key

approximation is that, at each transmission attempt, packet collision occurs with

constant and independent probability. Under this independence assumption, the

model captures the bidimensional process of backoff time counter and backoff stage

with a discrete-time Markov chain. Solving the Markov chaingives the stationary

probability that a node transmits in a generic slot. The system throughput is then

expressed as a function of this stationary probability.

In [58], Kumaret al. consider single cell WLANs where only one transmis-

sion is possible at any time. Their analysis begins with a similar key approxima-

tion as in [8], which leads to a fixed-point equation. They estimate the saturation

throughput by solving the fixed-point problem.

While these models can estimate throughput under arbitrarynumbers of

senders, they assume packet transmissions to be synchronized and there are no

partially overlapping transmissions. They do not apply to MWNs or multi-cell

WLANs, where not all nodes can hear each other and partially overlapping trans-

missions are common. Moreover, they assume binary interference, which is not

true in real wireless environments.
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General link throughput modeling: The second category of work targets gen-

eral topologies of MWNs or multi-cell WLANs where not all nodes are within

communication ranges of each other. Because of the challenges presented by such

topologies, existing models only handle restricted trafficscenarios.

Garettoet al. develop a two-flow model [31]. They focus on embedded

subgraphs in an MWN, each of which consisting of four nodes and two flows. De-

pending on how the four nodes are connected with each other, there are totally

twelve possible topologies. They develop models to predicteach flow’s short- and

long-term performance for cases where senders do not hear each other, particularly

an analytical model to characterize the long-term unfairness that arises in Asym-

metric Incomplete State when 802.11 CSMA is used as the MAC protocol, and

a model to capture the long-term fairness but short-term unfairness in Symmetric

Incomplete State.

The work in [88] is closest to ours. Reiset al. develop a model to predict

delivery rate and throughput under two competing broadcastsenders. They first ob-

tain an RF profile of anN-node network withO(N) measurements, in which each

node broadcasts in turn while other nodes record RSSI from the sender. The RF

profile contains a mapping between delivery rate and RSSI foreach receiver. Based

on this profile, their model predicts active probabilities of each sender when two

senders compete for the medium, and delivery rate at each receiver when both are

active simultaneously. Their model is based on measurements from real network,

therefore is more accurate than analytical models based on simplistic assumptions.

Our work falls into this category and advances the state-of-art by going
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beyond pairwise interference and modeling interference among an arbitrary number

of senders for both broadcast and unicast, both saturated and unsaturated demands.

In [46], Kashyapet al. independently present another measurement-based

approach to modeling transmission capacity and link throughput in 802.11 net-

works. Their basic model supports arbitrary number of backlogged broadcast senders.

This can be extended to support non-backlogged interferersand unicast. They eval-

uate and verify the cases of arbitrary number of backlogged broadcast interferers

and single non-backlogged broadcast interferer. Similar to [88] and our work, they

develop a MAC-layer model that is fed by a PHY-layer model. The PHY-layer

model takes RSS measurements as profiling input and models deferral and packet

capture. The sender-side of their MAC model is a discrete time Markov chain sim-

ilar to that in [8]. They also assume a constant deferral probability in their model

as in [8]. The receiver-side of their model considers both bit-error rate (BER) and

SINR when estimating delivery rate. There are at least two major differences be-

tween their model and ours. First, their model requires a strong independence as-

sumption, which does not hold in general. For example, theirmodel assumes that

two nodes carrier-sensing each other never transmit simultaneously, but in practice

the collision probability is around 12% due to both nodes choosing same backoff

timer. Our model can capture this nonnegligible event. Second, their model is based

on non-linear constraints, hence is expensive to solve. They use either simulation

which results in long running time or further approximationwhich leads to addi-

tional errors. In comparison, our model is based on linear constraints and can be

solved analytically and efficiently without compromising accuracy.
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End-to-end throughput modeling: The third category estimates the end-to-end

throughput in multihop wireless networks [30, 37, 43, 59]. Since modeling end-

to-end throughput is more difficult than one-hop throughput, to be tractable, such

models only apply to specific scenarios. In particular, theyeither consider asymp-

totic behavior of wireless networks [37], or assume optimalscheduling [43, 59], or

are limited to single flow scenarios [30].

In [37], Guptaet al. consider asymptotic behavior of wireless networks,

in particular, the throughput capacity of networks. Through analytical modeling,

they derive lower bounds on throughput capacity for both arbitrary and random

networks.

In [43], Jain et al. investigate the impact of interference. They model

the interference with a conflict graph and derive upper and lower bounds of op-

timal throughput for any given network and demand. The modelassumes optimal

scheduling by an omnipotent central entity, therefore it gives a best case bound.

A similar problem is studied in [59], with the goal of designing provably good al-

gorithms for arbitrary instances. The authors develop analytical models and dis-

tributed algorithms for joint routing and scheduling to achieve close to optimal

throughput capacity.

Gaoet al. present another model in [30] to compute end-to-end throughput

capacity of a given flow. They first map an ad hoc wireless network into a contention

graph to represent interference relationships. Then usingan analytical model of

802.11 DCF, they derive channel idle and collision probabilities, and furthermore

the final end-to-end throughput capacity.
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While our work currently models link throughput, we believeit can be gen-

eralized to model end-to-end throughput in real networks ifrouting information is

given. We will investigate this in the future.

3.3 Background on 802.11

The IEEE 802.11 standard [74] specifies two types of coordination func-

tions for stations to access the wireless medium: distributed coordination function

(DCF) and point coordination function (PCF). In this chapter, we focus on DCF,

which is much more widely used than PCF. DCF is based on CSMA/CA. Before

transmission, a station first checks to see if the medium is available by using vir-

tual carrier-sensing and physical carrier-sensing. The medium is considered busy if

either carrier-sensing indicates so. Virtual carrier-sensing considers medium is idle

if the Network Allocation Vector (NAV) is zero, otherwise itconsiders the medium

to be busy. Only when NAV is zero, physical carrier-sensing is performed. A sta-

tion determines the channel to be idle when the total energy received at a node is

less than the CCA (clear-channel assessment) threshold. Inthis case, a station may

begin transmission using the following rule. If the medium has been idle for longer

than a distributed inter-frame spacing time (DIFS) period,transmission can begin

immediately. Otherwise, a station that has data to send firstwaits for DIFS and then

waits for a random backoff interval uniformly chosen between [0, CWmin], where

CWmin is the minimum contention window. If at anytime during the period above

the medium is sensed busy, the station freezes its counter and the countdown re-

sumes when the medium becomes idle for DIFS. When the counterdecrements to
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zero, the node transmits the packet. In the case of unicast, if the receiver success-

fully receives the packet, it waits for a short inter-frame spacing time (SIFS) and

then transmits an ACK frame. If the sender does not receive anACK, it doubles its

contention window to reduce its access rate. When the contention window reaches

its maximum value, it stays at that value until a transmission succeeds, in which

case the contention window is reset toCWmin.

3.4 Brief Description of Our Model

Our model takes traffic demands and RF profile as input and outputs the

estimated sending and receiving rates for each node. Such a model is a powerful tool

for performing what-if analysis and facilitating network optimization and diagnosis.

More specifically, consider a network withN nodes. The inputs to the model are:

i) traffic demand from each senders to each receiverr, andii) RF profile, which

refers to the received signal strength (RSS) between every pair of nodes, denoted

asRsr. The outputs are the normalized throughput and goodput, denoted bytsr and

gsr, respectively.tsr is the rate at whichs sends traffic tor andgsr is the rate at

which r receives successfully. Bothtsr andgsr are normalized by the MAC-layer

data rate.

In this dissertation, we focus on one-hop traffic demands, which means that

traffic is only sent over one hop and not routed further. Ifr cannot hear froms,

its receiving rate is zero. Modeling network performance under one-hop traffic de-

mands is an important and necessary step towards estimatingend-to-end throughput

over multihop paths, which we plan to investigate in the future.
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Our model operates as follow. First, we measure the RF profileof the net-

work by letting each sender broadcast in turn and having the other nodes measure

received RSSI values and loss rates. From these measurements, we recover pair-

wise RSS (Rsr) and background interference (Br) due to sources other than nodes

in the modeled network (Section 3.7). While we use custom traffic for our experi-

ments, it may be feasible to perform these measurements using normal application

traffic.

Then, we apply oursender modelto estimate the amount of traffic sent by

each sender under the given demand and ourreceiver modelto estimate the amount

of traffic successfully received. Our key contributions liein the generality and ac-

curacy of the sender and receiver models. They apply to both broadcast and unicast

transmissions for an arbitrary number of senders, with and without saturated traffic

demands. For saturated broadcast demands, our model can estimate throughput and

goodput by computing the stationary probabilities of a Markov model. For unicast

demands or unsaturated broadcast demands, the transition matrix of the Markov

model involves additional variables and its stationary probabilities cannot be di-

rectly solved. Therefore we use an iterative framework, where we first initialize the

variables in the transition matrix and then compute stationary probabilities, which

are then used to update the transition matrix. Our results show that the iteration

framework is effective and converges quickly (within 10 iterations in our evalua-

tion).

We assume the following radio behavior. A transmitters determines the

channel is “clear” when the total energy it receives is belowthe CCA (clear-channel
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assessment) threshold,βs. A receiverr correctly decodes a transmission from a

senders wheni) its signal strength is at least radio sensitivity,γr; andii) the signal

to interference-plus-noise ratio (SINR) is at least the SINR threshold,δr. We denote

the thermal noise experienced byr asWr. The values ofβs, γr, δr, andWr are

constant but radio-dependent.

The key notation used in this chapter is summarized in Table 3.1. We explain

each term when it is first encountered.

Model inputs: measured
Rsr RSS from nodes to r
Br Background interference atr
dsr Traffic demand froms to r

Model inputs: radio-dependant constants
βs CCA threshold ofs
γr Radio sensitivity ofr
δr SINR threshold ofr
Wr Thermal noise ofr

Model outputs
tsr Normalized throughput: rate of traffic sent bys to r
gsr Normalized goodput: rate of traffic received byr from s
Lsr Packet loss rate froms to r

Other variables
Si Subset of nodes that are transmitting in statei
πi Probability that the network is in statei
M Matrix of transition probabilities among states
C(s|Si) Probability that channel is clear ats in statei
Q(s) Probability fors to have data to send with backoff counter = 0
OH(s) Average overhead from DIFS, SIFS, and ACK at senders
CW (s) Average congestion window ofs
Tµ(s) Average packet transmission time fors

Table 3.1: A summary of key notation.

72



www.manaraa.com

3.5 Broadcast Traffic

In this section, we present our model for broadcast traffic. Extensions to

handle unicast traffic are presented in the next section.

3.5.1 Sender Model

The goal of the broadcast sender model is to estimate how mucheach sender

can transmit given traffic demand. The classic Bianchi model[8] and its extensions

(e.g., [69]) model the behavior of 802.11 DCF by constructing a discrete Markov

chain. To make the model tractable, all packet transmissions are assumed to be

synchronized,i.e., there will be no partially overlapping transmissions. In ageneral

multihop wireless network, however, partially overlapping transmissions can be

common because not all nodes can carrier sense each other. Thus, these models

cannot be directly applied.

We develop a generalN-node sender model based on Markov chains. We

present it incrementally. First, we present the model for variable packet sizes and

saturated traffic demands. Then, we extend it to handle fixed packet sizes and un-

saturated demands in Sections 3.5.1.1 and 3.5.1.2. Finally, we describe techniques

to enhance the scalability of the model in Section 3.5.1.3.

At a high level, we construct a Markov chain where each statei represents

a set of nodes (denoted bySi) that are transmitting in a time slot. GivenN senders,

the Markov chain has2N possible states (which we prune in Section 3.5.1.3). We

derive the transition matrixM for the Markov chain based on 802.11 DCF and use

it to compute the stationary probabilityπi of each state. The throughput of noden
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is then simplytn =
∑

i|n∈Si
πi.

Deriving the transition matrix M : In this section, we assume that nodes send

variable-length packets with exponential distribution and that the state transitions

of different nodes are independent. (We relax these assumptions in Section 3.5.1.1.)

Because of independence, we can focus on computing the transition probabilities

of an individual node, sayn. This involves computing four transition probabilities

for every statei: i) staying in idle mode,P00(n|Si); ii) entering transmission mode,

P01(n|Si); iii) exiting transmission mode,P10(n|Si); andiv) staying in transmis-

sion mode,P11(n|Si). The probabilityM(i, j) of the network transitioning from

statei to j is:

M(i, j) =Πn∈Si∩Sj
P00(n|Si)×

Πn∈Si∩Sj
P01(n|Si)×

Πn∈Si∩Sj
P10(n|Si)×

Πn∈Si∩Sj
P11(n|Si), (3.1)

whereSi denotes the complement of setSi.

We compute the four per-node probabilities based on 802.11 DCF. A node

can begin transmission when all the following three conditions hold:i) its random

backoff counter reaches 0;ii) the medium is clear; andiii) the node has data to
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send. Thus:

P01(n|Si) = Pr[medium is clear ∧ counter = 0 ∧ n has data]

= Pr[medium is clear] × Pr[counter = 0|medium is clear]

× Pr[n has data|medium is clear ∧ counter = 0]

=
1

CW (n) + OH(n)
× C(n|Si) × Q(n), (3.2)

whereOH(n) (for overhead) denotes the additional clear time slots thata node

needs to wait in addition toCW (n), the average congestion window. For broadcast,

OH(n) is the DIFS duration in unit of time slots.C(n|Si) is the conditional clear

probability and we compute it below.Q(n) is the probability thatn has data to

send given that the medium is clear and the backoff counter iszero. For saturated

demands,Q(n) = 1. We deriveQ(n) for unsaturated demands in Section 3.5.1.2.

For the staying idle probability, we haveP00(n|Si) = 1 − P01(n|Si).

To computeP10(n|Si) andP11(n|Si), assume that both transmission and idle

times are exponentially distributed. (We relax this assumption in Section 3.5.1.1.)

Let Tµ denote the average transmission time, computed based on packet size and

transmission rate of the sender, andTslot denote the duration of a time slot. Then

we have:

P10(n|Si) = Tslot/Tµ(n) (3.3)

P10(n|Si) = 1 − Tslot/Tµ(n) (3.4)

The conditional clear probabilityC(n|S) = Pr{In|S ≤ βn}, whereIn|S is

the total interference atn (when nodes inS are transmitting) andβn is the CCA
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threshold.In|S is the sum of constant thermal noiseWn, the background interfer-

enceBn, and interference due to data transmissions by nodes inS except forn

itself. Thus,In|S = Wn + Bn +
∑

s∈S\{n} Rsn. To estimate this sum, we assume

that each term is a lognormal random variable. The standard approach for dealing

with the sum of such variables is to approximate it by a singlelognormal random

variable [25,94]. Following Fenton [25], we find a lognormalrandom variable that

matches the mean and the variance ofIn|S.

Formally, assuming thatBn andRsn (∀s ∈ S) are independent, we have

E[In|S] = Wn + B̄n +
∑

s∈S\{n} R̄sn, andV ar[In|S] = B
var
n +

∑

s∈S\{n} R
var
sn . Let

e
Z be a lognormal random variable withZ ∼ N(µ, σ2). The first two moments of

e
Z areE[eZ ] = e

µ+σ2/2 andE[e2Z ] = e
2µ+2σ2

. Equating the first two moments of

e
Z andIn|S gives: (i)eµ+σ2/2 = E[In|S], and (ii)e2µ+2σ2

= E[I2
n|S] = V ar[In|S] +

(E[In|S])2. Therefore,

µ = 2 log E[In|S] − 1

2
log E[I2

n|S] (3.5)

σ2 = log E[I2
n|S] − 2 log E[In|S] (3.6)

We can then approximateC(n|S) as

C(n|S) ≈ Pr{eZ ≤ βn} = Pr{Z ≤ log βn} = Φ[
log βn − µ

σ
],

whereΦ[x] = 1√
2π

∫ x

−∞ e
−u2

2 du is the standard normal CDF.

Computing the stationary probabilities πi: Having derived the transition matrix

M , we can compute the stationary state probabilitiesπi by solving the following
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system of linear equations:

∑

i

πi M(i, j) = πj (∀j) (3.7)

∑

i

πi = 1 (3.8)

where Equation (3.7) comes from the property that the stationary probabilities of

the current and next states are equal, and Equation (3.8) normalizes the sum of

the stationary probabilities to 1. For sparse matrixM , π can be efficiently solved,

for instance, usinglsqr [75]. Section 3.5.1.3 describes how to makeM sparse to

enhance scalability.

3.5.1.1 Handling Similar Packet Sizes

The previous section assumes variable packet sizes and independent transi-

tion probabilities for various nodes. But when all nodes usethe same packet size,

the independence assumption no longer holds. Specifically,when two nodes within

carrier sense range transmit simultaneously, the start andend times of their trans-

missions will get synchronized with each other. The synchronization occurs be-

cause they will transmit simultaneously only when their random backoff counters

both reach 0 within a tiny interval (otherwise the node that counts down to 0 later

will sense the carrier and defer to the earlier transmission) [74]. The synchronized

transmission and the same transmission time result in synchronized completion.

Note that synchronization occurs even when the packet sizesare similar but not

identical, since the transmissions start within one time slot difference and finish by

a constant offset.
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To handle such scenarios, we construct asynchronization graphfor each set

S of transmitting nodes as follows. Two nodess, t ∈ S are connected in the syn-

chronization graph forS (denoted asGsyn(S)) if C(s|{t}) < 0.1 andC(t|{s}) <

0.1, whereC(i|{j}) denotes the clear probability at nodei when nodej alone is

transmitting. We find all the connected components inGsyn(S), where each con-

nected component represents asynchronization group.

Then we make two modifications to the transition probabilitiesM(i, j) to

account for synchronization effects. First, if there exists two nodesm andn in the

same synchronization group ofGsyn(Si) such thatm ∈ Sj, n ∈ Sj , thenM(i, j) =

0. This is because all nodes in a synchronization group must exit the transmission

mode together. Second, the probability for all nodes in a synchronization group

to exit the transmission mode together isTslot/Tµ. In comparison, with variable

packet sizes, due to the independence assumption the above transition probability

is Πn
Tslot

Tµ(n)
(for all n in the synchronization group).

3.5.1.2 Handling Unsaturated Demands

The main challenge in handling unsaturated demands is estimating Q(n)

which is the probability thatn has data to send when its backoff counter is 0 and the

channel is clear atn. With saturated demands, it has a constant value of 1, but with

unsaturated demands it must be computed to ensure that the traffic demandsdn are

not exceeded. ComputingQ(n) is difficult due to strong inter-dependency among

nodes.Q(n) depends on how often the channel is clear atn, which depends on the

amount of traffic generated by the other nodes, which in turn depends onQ(n).
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We develop an iterative algorithm to computeQ. The algorithm initializes

Q to 1 for all senders. In each iteration, the algorithm first derives the transition

matrix M based on the oldQ values and computes the stationary probabilitiesπi

and the achieved throughputtoldn =
∑

i:n∈Si
πi. It then updatesQ based on their

values in the previous iteration. For this, we use the following relationships:

Qold(n) × Tµ(n)

Qold × Tµ(n) + Toff(n)
= toldn (3.9)

Qnew(n) × Tµ(n)

Qnew(n) × Tµ(n) + Toff(n)
≤ dn (3.10)

Qnew(n) ≤ 1 (3.11)

whereToff(n) represents the average time gap between two consecutive transmis-

sions fromn andTµ(n) is the average transmission time of a packet fromn.

Equation (3.9) captures the relationship betweenQ(n) and the node’s send-

ing rate in the previous iteration. Equation (3.10) captures that the total amount

of traffic sent byn cannot be more than the demand. Solving the three constraints

yields

Qnew(n) = min

{

1, Qold(n)
dn

1 − dn

1 − toldn

toldn

}

. (3.12)

At this point, we could directly useQnew(n) as our estimate for the next iteration.

For quick convergence, we apply a relaxation procedure thatis commonly used in

equilibrium computation [54]. We setQnew(n) to be a linear combination of the

computedQnew(n) andQold(n): Qnew(n) = α · Qnew(n) + (1 − α) · Qold(n). Our

evaluation usesα = 0.9, though we find that the model converges quickly for a

wide range ofα.
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3.5.1.3 Enhancing Scalability

The general sender model, as presented earlier, requires2N states and2N ×

2N transition matrix forN senders. To enhance scalability, we use two techniques

that prune the states and transitions. First, we prune all those states that involve

too many synchronized transmissions, which should occur with low probability.

Specifically, given statei and the correspondingSi, we eliminatei if the number of

edges in the corresponding synchronization graphGsyn(Si) exceeds a given thresh-

old, which is set to 2 in our evaluation. Second, we prune all those state transitions

whose transition probabilities that are too low. Specifically, we reset the transition

probabilityM(i, j) to 0 if it falls below a threshold (which is set to 0.001 in our

evaluation). With common configurations, transitions fromi to j such that≥ 2

synchronization groups exits the transmission mode is no longer allowed. Simi-

larly, transitions with one node exiting transmission and one starting it tend to be

filtered out as well. In this way, we can reduce the number of non-zero entries in

M , thus improve the efficiency of sparse linear solvers such aslsqr in computing

the stationary probabilities. The combination of these twotechniques is highly ef-

fective. For example, consider 10 senders in a5 × 5 grid topology, where any two

direct horizontal, vertical, or diagonal neighbors can hear each other. Without prun-

ing, the transition matrix has 1024 states and more than a million transitions. After

pruning, it has only 370 states and 1736 transitions.
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3.5.2 Receiver Model

We now present our receiver model for broadcast traffic. Our goal is to

estimate the goodputgmn (i.e., the receiving rate). We havegmn = ηtm(1 − Lmn),

whereLmn is the packet loss rate fromm to n, andη =
Tpayload

Tpayload+Theader+Tpreamble

represents the fraction of transmission time for the payload (excluding header and

preamble overhead).

A key challenge in estimatingLmn is relating slot-level loss rates (derived

from ourslot-levelMarkov chain) to packet-level loss rates. Our experiments show

that slot-level loss rates (i.e., the fraction of time slots in which loss occurs) can be

quite different from packet-level loss rates. For example,when loss comes from

hidden terminals, where senders do not sense each other and cause collisions, a

packet is usually corrupted partially. In this case, the packet-level loss rate can be

significantly higher than slot-level loss rate. Consider transmission of 10 packets,

which contain altogether 1000 time slots. Even if only around 10% slots (100 slots)

are lossy, they can cause a packet loss rate as high as 100% if these lossy slots are

distributed across all packets. Below we first analyze the slot-level loss rates and

then convert them into packet-level loss rates.

3.5.2.1 Conditional Slot-Level Loss Probabilities

Let I∗
n|S = Wn + Bn +

∑

t∈S Rtn be the total interference atn. We allow

t = n becausen and senderm may be transmitting at the same time. At the slot

level, a loss occurs when either SINR falls belowδn and or RSS falls belowγn. Let

ℓmn|S = Pr{Rmn

I∗
n|S

< δn} be the slot-level loss rate caused by low SINR whenS is
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transmitting. Letℓrss
mn = Pr{Rmn < γn} be the slot-level loss rate caused by low

RSS.

ℓmn|S can be computed in a manner similar to that of conditional clear prob-

ability. ApproximateI∗
n|S = Wn + Bn +

∑

t∈S Rtn with a single moment-matching

lognormal random variableeZ , whereZ ∼ N(µ, σ2). Since the ratio of two in-

dependent lognormal random variablesRmn and e
Z is also a lognormal random

variable, leteZ′
= Rmn

e
Z , whereZ ′ ∼ N(µ′, σ′2). We haveµ′ = E[log Rmn]− µ and

σ′2 = V ar[log Rmn] + σ2. Thus:

ℓmn|S = Pr

{

Rmn

I∗
n|S

< δn

}

≈ Pr{eZ′

< δn} = Φ

[

log δn − µ′

σ′

]

. (3.13)

There are two ways to estimateℓrss
mn|S = Pr{Rmn < γn}. When the distribu-

tion of Rmn is available, we can directly compute Pr{Rmn < γn}. In practice,Rmn

has to be estimated and is subject to estimation error. To minimize error, we ob-

serve that when there is only a single sender and no external interference, all losses

are due to low RSS. Thus we can directly use the measured packet loss rate under

transmissions from a single senderm to estimateℓrss
mn.

3.5.2.2 Packet-Level Loss ProbabilityLmn

Packet losses can be broadly divided into three categories.First, packet-

level losses can stem from low RSS (Lrss
mn), which is not directly related to collision.

Second, losses can stem from collision with packets from thesame synchronization

group. In this case, the fraction of lost packets (Lsyn
mn) is close to the fraction of

lost slots. Third, losses can also stem from asynchronous transmissions (e.g., from
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hidden terminals). In this case, the packet level loss rate (Lasyn
mn ) can be much higher

than the slot-level loss rate. Assuming independence amongthe three types of

losses, the overall packet-level loss rate is:

Lmn = 1 − (1 − Lrss
mn) × (1 − Lsyn

mn) × (1 − Lasyn
mn ) (3.14)

Lrss
mn can be estimated as1 − (1 − ℓrss

mn)Tµ/Tslot. Note that when measured

packet loss rate from a single senderm is available, we can directly use the loss rate

asLrss
mn without first converting it intoℓrss

mn.

To deriveLsyn
mn, let SS(m) be the set of states that contain at least one syn-

chronized transmissions involvingm, i.e.,

SS(m)
△
= {i | m ∈ Si ∧ Si contains node(s) synchronized withm}.

We then estimateLsyn
mn as

Lsyn
mn =

∑

i∈SS(m) πiℓmn|Si
∑

i|m∈Si
πi

=

∑

i∈SS(m) πiℓmn|Si

tm
,

which gives the total fraction of slot-level losses occurred whenm collides with

background traffic synchronously. Recall thattm is the throughput ofm.

To deriveLasyn
mn , we first compute the slot-level loss rates due to asynchronous

collisions between foreground and background traffic:

ℓasyn
mn =

∑

i:i6∈SS(m)∧m∈Si
πiℓmn|Si

∑

i|m∈Si
πi

=

∑

i:i6∈SS(m)∧m∈Si
πiℓmn|Si

tm

We model the background traffic as an ON/OFF process with exponentially dis-

tributed ON and OFF periods. Lettbg
on andtbg

off denote average durations of the two
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periods. Under the assumption that the foreground and background traffic arrives

independent of each other, the slot-level loss rate experienced by the foreground

traffic should be equal to the fraction of time that the background traffic is in ON

periods. That is,

tbg
on

tbg
on + tbg

off

= ℓasyn
mn (3.15)

We havetbg
on = Tµ and the above equation yieldstbg

off = 1−ℓasyn
mn

ℓasyn
mn

Tµ.

A packet is successfully received if it starts with the background OFF period

and the rest of this OFF period lasts at least the packet transmission time. We thus

have:

1 − Lasyn
mn =

tbg
off

tbg
off + Tµ

· exp

[

− Tµ

tbg
off

]

(3.16)

= (1 − ℓasyn
mn ) · exp

[

− ℓasyn
mn

1 − ℓasyn
mn

]

(3.17)

where the first term on the right hand side of Equation (3.16) is the probability

that the packet transmission starts in the OFF period and thesecond term is the

probability that the rest of this OFF period lasts for at least Tµ.

3.6 Unicast Traffic

In this section, we extend our broadcast models to handle unicast traffic.

There are two key differences between unicast and broadcasttransmissions. On

the sender side, the transition matrixM is different under unicast due to additional

ACK overhead and exponential backoff. On the receiver side,there are additional
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losses due to ACKs colliding with both data and other ACKs. Wepresent the sender

side extensions followed by the receiver side extensions.

3.6.1 Extensions to Sender Model

The transition matrix for the sender, in particular,OH(m) and CW (m)

in Equation (3.2) are different for unicast traffic. Unicasthas additional overhead

from SIFS and ACK. IftSIFS andtACK denote the number of time slots for SIFS

and ACK,OHmn = tDIFS + tSIFS + (1 − Lmn)tACK .

CW (m) can be derived based on the packet-level loss rateLmn across all

receivers as follows. LetH(L) be the average contention window under packet loss

rateL, andRMAX be the maximum number of retransmissions. Then:

H(L) =

RMAX
∑

i=0

min{(CWmin + 1)2i − 1, CWmax}
2

Li (3.18)

A sender may transmit to more than one receiver, each with a different loss

rate. We estimateOH(m) andCW (m) as the weighted average over all receivers,

where the weights are based on the total transmissions to thereceivers. LetGmn

denote the expected number of transmissions (including thefirst transmission) for

each data packet sent fromm to n. For simplicity, the weight can be approximated

as Gmn×dmn
P

r Gmr×dmr
. Assuming independent packet losses,Gmn =

∑RMAX
i=0 ℓi

mn. There-

fore:
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CW (m) =
∑

n∈Recv(m)

H(Lmn)
Gmn × dmn

∑

r∈Recv(m) Gmr × dmr

(3.19)

OH(m) =
∑

n∈Recv(m)

OHmn
Gmn × dmn

∑

r∈Recv(m) Gmr × dmr
(3.20)

whereRecv(m) denotesm’s receivers.

The new expressions ofOH(m) andCW (m) above enable us to compute

the transition matrix and state probabilitiesπi for unicast traffic. From that the

throughput fromm to n can be computed astm∗ =
∑

i|m∈Si
πi and tmn = tm∗ ·

dmn×Gmn
P

r dmr×Gmr
.

3.6.2 Extensions to Receiver Model

Consider nodem sending data to noden. As for broadcast, we decom-

pose packet-level unicast loss rateLmn into three components: (i)Lrss
mn – losses

due to low RSS (and not collisions), (ii)Lsyn
mn – losses due to synchronized colli-

sions between foreground and background traffic, and (iii)Lasyn
mn – losses due to

asynchronous collisions between foreground and background traffic. Assuming in-

dependence again,Lmn = 1 − (1 − Lrss
mn) × (1 − Lsyn

mn) × (1 − Lasyn
mn ).

The key extensions that we make are: (i) extendLrss
mn to include RSS induced

losses for both DATA and ACK packets, and (ii) extendℓmn|S to include SINR

induced losses due to collisions between ACK/DATA, DATA/ACK, ACK/ACK (in

addition to DATA/DATA), which is then used to computeLsyn
mn andLasyn

mn in the same

way as for broadcast. Below we describe these extensions in detail.
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Estimating RSS-induced lossLrss
mn: As before, letℓrss

mn = Pr{Rmn < γn}. Simi-

larly, let ℓrss
nm = Pr{Rnm < γm}. The combined RSS-induced loss on DATA and

ACK is then

Lrss
mn = 1 − (1 − ℓrss

mn)Tµ(m)/Tslot × (1 − ℓrss
nm)TACK(n)/Tslot

whereTACK(n) is the duration of an ACK sent byn. Here we assume that the

RSS-induced losses for DATA and ACK are independent.

Estimating SINR-induced lossℓmn|Si
: We consider the following three cases of

low SINR induced losses:

C1. DATA loss caused by other DATA’s:DATA transmissions fromm to n get

lost due to collisions with DATA transmissions by nodes inSi \ {m}. This

case is already considered in the broadcast scenario and we haveℓC1
mn|Si

=

Pr{Rmn

IC1
n|Si

< δn}, whereIC1
n|Si

= Wn + Bn +
∑

t∈Si
Rtn.

C2. DATA loss caused by other DATA’s and ACK’s:A synchronization group

G (m 6∈ G) of Gsyn(Si) exits the transmission mode while all nodes in

Si \ G continues transmitting. In this case, the ACK’s generated by re-

cipients of nodes inG could potentially increase the data loss rate from

m to n. To quantify such effects, let random variableRack(m, n) denote

the noise experienced byn whenm stops transmitting, causing some node

in Recv(m) to send an ACK back tos. The total noise atn is therefore

IC2
n|Si

= Wn+Bn+
∑

t∈Si\G Rtn+
∑

t∈G Rack(t, n). Letj be the new state after

nodes inG stop transmitting. Among all possible next states fori to transit to
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(excludingi itself), j will be chosen with probability M(i,j)
1−M(i,i)

. Therefore, the

total slot-level loss rate caused by ACK’s isℓC2
mn|Si

(G) = M(i,j)
1−M(i,i)

Pr{Rmn

IC2
n|Si

<

δn}.

C3. ACK loss caused by other DATA’s and ACK’s:The synchronization group

G′ that m belongs to exits the transmission mode while all nodes inSi \

G′ continue transmitting. Letj′ be the new state resulted from such tran-

sition. During such transition, ACK’s sent by receivers of nodes inG′ \

{m} combined with DATA’s sent by nodes inSi \ G′ together can poten-

tially corrupt ACK’s sent fromn to m. The probability for this to occur is

ℓC3
mn|Si

= M(i,j′)
1−M(i,i)

Pr{ Rnm

IC3
m|Si

< δn}, IC3
m|Si

= Wm + Bm +
∑

t∈Si\G′ Rtm +
∑

t∈G′\{m} Rack(t, m).

Note that with our pruning strategies described in Section 3.5.1.3, when a

groupG stops transmitting, we do not need to worry about having another group

entering or exiting the transmission mode at the same time (because the transition

probability would become too small). Under the independence assumption, we can

compute the combined conditional slot-level loss rate as

1 − ℓmn|S = (1 − ℓC1
mn|S) × ΠG:m6∈G(1 − ℓC2

mn|S(G)) × (1 − ℓC3
mn|S) (3.21)

Now the only remaining issue is to estimateRack(m, n). The main chal-

lenge is thatm may have multiple receivers and RSS from different receivers are

different. To address this, for each sender we compute the weighted average of

interference that its receivers generate, where the weights are based on the traffic
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demands and delivery probabilities to the receivers. Specifically, we approximate

RSS contributed bym’s ACKs at noden as a log-normal distribution by computing

its mean and variance, denoted byR̄ack(m, n) andRvar
ack(m, n), as

R̄ack(m, n) =
∑

r∈Recv(m)

Gmrdmr
∑

r′ Gmr′dmr′
· (1 − Lmr) · R̄rn (3.22)

Rvar
ack(m, n) =

∑

r∈Recv(m)

Gmrdmr
∑

r′ Gmr′dmr′
· (1 − Lmr) · Rvar

rn (3.23)

whereLmr is the packet loss rate obtained during the previous iteration andGmr =
∑RMAX

k=0 Lk
mr.

Finally, once all the loss ratesLmn are available andtmn has been computed,

we can compute the goodput asgmn = ηtmn
1−LRMAX+1

mn

Gmn
, whereGmn is the average

number of transmissions per data packet,(1−LRMAX+1
mn ) gives the packet delivery

rate (after the initial transmission andRMAX retransmissions), andη is used to

exclude the overhead due to packet headers and the preamble.

3.7 Obtaining Model Inputs

In this section, we describe how we obtain the various inputsto our model.

To estimate pairwise RSS and the external interference at each node, namelyRsr

andBr, we measure RSSI atr when onlys is transmitting. We only requireO(N)

measurements because wireless is broadcast medium and all receivers can measure

RSSI when a node transmits. From Reiset al. [88], RSSIsr = 10log10(
Rsr+Br

Wr
).

For simplicity, we assumeBr = 0. (This would be true when interference from

external transmitters is negligible.)Rsr is then estimated by finding a log-normal
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distribution that best fits RSSI measurement data. LetR̄sr andR′var
sr denote the

mean and variance of the best fitting log-normal distribution. The final RSS dis-

tribution is estimated as a log normal distribution with mean of R̄sr and variance

of R′var
sr · tpreamble

tslot
. We estimate RSS variance asR′var

sr · tpreamble

tslot
because we are

interested in RSS variation in the time scale of slots while RSSI is measured as an

average over the preamble period andR′var
sr is tslot

tpreamble
of the slot-level RSS vari-

ance.

As mentioned in Section 3.5.2.1, when the RSS distribution is available, we

can estimate Pr{Rmn > γn} immediately from the distribution. In practice, because

RSSI measurements are only available on received packets, estimating the true RSS

distribution is hard. To get around the problem, we can estimate Pr{Rmn > γn} by

directly computing the delivery rate (i.e., the fraction of packets that are received)

using the RSSI measurement data.

We find that when the delivery rate is too low (e.g., below 10%), computing

the mean and variance of RSS based on RSSI measurements yields significant error

because RSSI measurements are only available on received packets. Accurately

estimating the trueRsr under such cases is an interesting subject on its own, and we

leave it as part of our future work. In our current testbed evaluation, we consider

only the sender groups such that every node pairs andr within the sender group

has eitherLsr ≤ 90% or Lsr = 100%. In the former case, average RSSI is used for

estimatingRsr, while in the latter case we assumeRsr = 0. For fair comparison

with the UW model, in all 2-sender evaluation we do not apply the above filtering,

and compare the estimated and actual values over all sender groups.
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Our model also requires the values of a few radio-dependant constants. For

testbed experiments, based on our hardware, we use -95 dBm asthermal noise,

2.5 dB as SINR threshold, and -85 dBm as CCA threshold. For simulation experi-

ments, we use the default values in Qualnet, where the thermal noise is -92.52 dBm

in 802.11a and -102.5191 dBm in 802.11b, SINR threshold is 2.5 dB, and CCA

threshold is -85 dBm in 802.11a and -93 dBm in 802.11b.

3.8 Simulator-based Evaluation

We evaluate the accuracy of our model in both simulation and testbed set-

tings. These two evaluation methodologies are complementary. Testbed experi-

ments allow us to quantify accuracy in more realistic scenarios which are subject to

fluctuation in the RF environment, measurement errors, and variations across real

hardware. Simulation offers a more controlled environmentand allows us to more

comprehensively assess the accuracy of individual components in our model. Many

of the simplifying assumptions in our model relate to the interaction of the MAC

protocol, and any inaccuracy due to these assumptions impact the simulator results

as well.

3.8.1 Qualnet Modifications

We use Qualnet 3.9.5 for our evaluation. It has been shown to provide a rel-

atively accurate and realistic simulation environment [99]. We make the following

modifications to the Qualnet.

Correct desynchronization problem: The IEEE 802.11 standard states
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that when the medium is busy at any time during a backoff slot,the backoff proce-

dure must be suspended without decreasing the value of the backoff timer. However

in Qualnet, the backoff timer is decremented by propagationdelay and causes time

desynchronization. Such desynchronization results in an unrealistically low colli-

sion ratio, as reported in [14] and confirmed by our evaluation. We fix the problem

by ensuring that the backoff timer is not decremented when the medium is busy at

any instant during a time slot.

Disable EIFS: According to the IEEE 802.11 standard, in DCF a frame

transmission must use EIFS whenever a frame transmission begins but does not

result in the correct reception of a complete MAC frame. However several research

papers [14,66] report that EIFS results in unfairness, and suggests disabling EIFS by

setting EIFS duration to the same value as DIFS. Existing chipsets such as Atheros

also have a configurable EIFS duration. We use the above method to disable EIFS,

and postpone modeling EIFS to our future work.

Modify capture effects: In Qualnet, a receiver accepts frames with stronger

signals only when they arrive earlier than reception of other frames. Recently,

Kochutet al.[51] report that real wireless cards accept frames with stronger signals

even if they arrive after reception has started. Therefore,we modify Qualnet to ac-

cept frames with stronger signals regardless of whether they arrive earlier or later

than reception of other frames. In contrast to modificationsused in [51], we also

accept frames that arrive after preamble of the frame being received. This simplifies

our model, and we plan to explore a detailed model of capture effects in our future

work.
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Support SINR model: The 802.11 implementation in Qualnet uses a Bit-

Error-Rate (BER) model, where it first computes SINR of the current packet and

uses its SINR to determine BER and convert it to the packet loss rate. In order

to match Qualnet simulation, our model needs the same BER table implemented

in Qualnet. However Qualnet source code does not reveal the BER table it uses

for 802.11. To ensure consistency across our model and Qualnet, we implement

the commonly used SINR model in both Qualnet and our model. Ifthe BER table

becomes available, our model can immediately support BER model by using BER

table to map from SINR to loss rate.

3.8.2 Evaluation Methodology

We evaluate our model for both broadcast and unicast by varying the num-

ber of simultaneous senders, the frequency band, and the network topologies. We

consider both saturated demands and unsaturated demands. The demand is normal-

ized by the MAC-layer data rate, and a sender with saturated demand has demand

of 1.

Throughout the evaluation, we use 25 node topologies. Senders generate

1024-byte UDP packets at a constant bit rate (CBR). The actual sending rate to

the air may not be constant, however, due to variable contention delay. We use

the lowest MAC data rates,i.e., 6Mbps in 802.11a and 1Mbps in 802.11b. The

communication ranges of 802.11a and 802.11b with the lowestdata rates are 169

m and 348 m, respectively.

For each scenario, we conduct 10 random runs, where each run randomly se-
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lects the senders and receivers and the demands. We use normalized (based on max-

imum possible) throughput to refer to the total sending rate(including the packet

header and preamble) and normalized goodput to refer to the receiving rate (exclud-

ing packet overhead). We quantify the accuracy of our model by comparing with

the actual throughput and goodput and computing mean absolute error (MAE) and

root mean square error (RMSE). MAE is defined as
P

i |esti−actuali|
n

, and RMSE is

defined as
√

P

i(esti−actuali)2

n
, wheren is total number of predictions. We also study

the accuracy in detail using scatter plots of actual and estimated values. For clarity,

in the scatter plots the data points are plotted in an increasing order of actual values.

We consider the following scenarios below: (i) 2 broadcast senders with sat-

urated demands; (ii)N broadcast senders with saturated demands; (iii)N broadcast

senders with unsaturated demands; (iv)N unicast senders with saturated demands;

and (v)N unicast senders with unsaturated demands.

For the first scenario, we compare our model with both Qualnetsimulation

and UW model [88]. The UW model predicts the impact of interference in the pres-

ence of two broadcast senders with saturated demands. It is seeded usingO(N)

measurements similar to ours – each node takes turn to broadcast packets and other

nodes log RSSIs and packet delivery rate. Each node obtains its RSSI versus de-

livery rate profile using these measurements. To predict theimpact of two senders

trying to send simultaneously, it first estimates the probability with which senders

defers based on the RSSIs they receive from each other. To estimate a receiver’s

goodput from a sender, it uses the standard SINR model, whiletreating the activity

from the second sender as additional interference at the receiver. Since there are no
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existing models for the other scenarios, we compare our model only with the actual

values obtained in Qualnet.

3.8.3 Broadcast Traffic

We begin our evaluation by studying broadcast traffic, starting with the sim-

ple case of two senders with saturated demands.

3.8.3.1 Two Saturated Senders

Figure 3.1 shows the accuracy of throughput and goodput estimates of our

model and the UW model. The graphs plot the actual values obtained in Qualnet

and the predictions of the two models. The legend contains the RMSE values for

the two models.

We see that both models perform well overall, though our model is more

accurate. The RMSE in our model is under 0.5% while that of theUW model is

14% or more. The UW model also tends to have highly inaccuratepredictions for

a few cases.

The error in UW model is mainly because it assumes a packet canbe re-

ceived as long as its SINR exceeds the threshold. It ignores the other condition that

RSS should also exceed the radio sensitivity for a packet to be received. For ex-

ample, when there is only thermal noise (-95 dBm) and RSS is above -92.5, SINR

would be above the 2.5 dB threshold, and the packets are considered to be received

100% of the time under the UW model. However, in reality, whenRSS is between

-92.5 dBm and -85 dBm (the radio sensitivity value for 802.11a in Qualnet), the
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Figure 3.1: 2 saturated broadcast senders using 802.11a in a5 × 5 grid topology
over an300m × 300m area.

delivery rate is in fact 0. Unfortunately, there is no simpleextension to the UW

model to accommodate the radio sensitivity constraint because the model builds RF

profile directly based on delivery rate. With the radio sensitivity constraint, there is

no longer a direct translation betweenRsr and delivery rate since their relationship

changes fromPr{ Rsr

Ir+Wr
≥ δr} to Pr{Rsr > γr and Rsr

Ir+Wr
≥ δr}. For a given

delivery rate,Rsr is no longer unique.

3.8.3.2 N Saturated Senders

Next, we consider the case ofN broadcast senders. Each sender has satu-

rated demand, as before. We evaluate our model by varying thefrequency band,

network topology, and the number of senders.

Different frequency bands (802.11a and 802.11b):Figures 3.2 and 3.3 show the

scatter plots of actual and predicted throughput and goodput under 802.11a and

802.11b. In each case, there are 10 broadcast senders with infinite demands. We
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Figure 3.2: 10 saturated broadcast senders using 802.11a ina 5 × 5 grid topology
over an300m × 300m area.
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Figure 3.3: 10 saturated broadcast senders using 802.11b ina 5 × 5 grid topology
in an500m × 500m area.

see that our model is highly accurate in both cases, with lessthan 5% RMSE. The

goodput error is lower than the throughput error because many receivers have no

connectivity to one or more senders, and it is easier to predict the exact goodput for

such receivers.

Different network topologies (grid and random): Figure 3.4 and 3.5 show the
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Figure 3.4: 10 saturated broadcast senders using 802.11a ina 5 × 5 grid topology
in an500m × 500m area.
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Figure 3.5: 10 saturated broadcast senders using 802.11a inrandom topologies,
where nodes are randomly placed in an300m × 300m area.

results for 10 broadcast senders using 802.11a in a500m×500m grid topology and

300m × 300m random topology. In each case, the model closely tracks the actual

values and the error is around or below 5%.

Different number of senders (2-10): Figure 3.6 plots throughput and goodput

RMSE as a function of the number of broadcast senders. We see that the error
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Figure 3.6: RMSE under a varying number of sender.

tends to increase slightly with the number of senders due to more complex interac-

tions. Yet under all numbers of senders, the model can keep RMSE within 7% for

throughput estimation and within 3% for goodput estimation.

3.8.3.3 N Unsaturated Senders

We now consider unsaturated senders and allow nodes to have different traf-

fic demands. We assign each sender a normalized demand between 0.1 and 0.9 and

use the corresponding inter-arrival time for CBR traffic.

Figure 3.7 shows the results for 10 broadcast senders using 802.11a in a5×5

grid topology over a300m× 300m area. We see that the accuracy of our model for

unsaturated demands, which are harder to model, is high as well and comparable to

its accuracy for saturated demands.
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Figure 3.7: 10 unsaturated broadcast senders using 802.11ain a5×5 grid topology
over an300m × 300m area.

3.8.4 Unicast Traffic

In this section, we turn our attention to unicast traffic and evaluate how well

the unicast extensions of our model perform.

3.8.4.1 N Saturated Senders

We start with the case ofN saturated senders. Figure 3.8 shows the result

for 10 unicast senders using 802.11a. As for broadcast traffic, the predictions of our

model track the actual values closely, and the RMSE is within5%.

3.8.4.2 N Unsaturated Senders

We conclude our simulation-based evaluation by studying the case of unsat-

urated unicast senders. As above, we have 10 senders using 802.11a in a5× 5 grid

topology. The demand for each sender is assigned as for the broadcast setting in

Section 3.8.3.3.
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Figure 3.8: 10 saturated unicast senders using 802.11a in a5×5 grid topology over
an300m × 300m area.
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Figure 3.9: 10 unsaturated unicast senders using 802.11a ina 5 × 5 grid topology
over an300m × 300m area.

Figure 3.9, shows the prediction results for this setting. Our model continues

to yield accurate predictions. Not only is the net RMSE under4%, but we also

do not have individual instances where the predictions of our model are highly

inaccurate.
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Summary In this section, we used simulation to evaluate the accuracyof our

model in many diverse settings which include broadcast and unicast traffic, unsatu-

rated and saturated demands, and different number of senders. We find our model’s

predictions of throughput and goodput are accurate in all the settings that we con-

sidered, and its RMSE value is typically under 5%. We also findthat our model,

while being more general, is also more accurate than a state-of-art model [88] for

the specific case of 2 broadcast senders with saturated demands.

3.9 Testbed-based Evaluation

In this section, we evaluate our model using testbed experiments. Our goal

is to quantify the accuracy of our model in real RF environments and with real

hardware. We employ traces from two different testbeds for this purpose. Below,

we describe these testbeds and the traces, followed by the evaluation results for

each testbed.

3.9.1 Testbeds and Traces

The two testbeds are our own indoor wireless testbed and the UW testbed

used by Reiset al.[88]. Our testbed has 22 DELL dimensions 1100 PCs, located on

the same floor of an office building. Each machine has a 2.66 GHzIntel Celeron D

Processor 330 with 512 MB of memory, and is equipped with 802.11 a/b/g NetGear

WAG511. Each machine runs Fedora Core Linux. We useMadwifias the driver for

the wireless cards, and useclick to collect traces.

We collect the trace as follows. First, we let one node broadcast 1000-byte
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UDP packets at full speed for 1 minute and log received packets at all the other

nodes. We repeat the process until every node in the testbed has broadcast once. We

refer to this as 1-sender trace. Applying the approach described in Section 3.7 to the

1-sender trace gives us estimate of RSS between every pair ofnodes and external

interference at each node. Since there is a resident 802.11b/g wireless network

that causes strong interference, we collect traces using only 802.11a on our testbed.

Unless otherwise specified, each node uses 30 mW transmission power.

In order to evaluate the accuracy of our model, we measure theactual send-

ing and receiving rates under multiple senders. These traces are only needed for

obtaining “ground truth” and not required for using the model. Given a specified

number of sendersk, we randomly selectk nodes and let them broadcast simul-

taneously for 1 minute. All other nodes log received packets. In the 1-minute

broadcasting period, the nodes send as fast as possible for the saturated demand ex-

periments. For unsaturated demands, each sender is assigned a normalized demand

which is total demand divided by the MAC data rate. The normalized demand is

selected randomly between 0.1 and 0.9 and specifies the maximum rate at which

the sender can send. For each configuration,i.e., the specified number of senders

and demand type, we conduct 100 random runs with different set of k senders.

The UW testbed had 14-nodes inside an office building. The traces we use

are same as those used for evaluating the UW model [88]. The collection methodol-

ogy is similar to the above except that these traces contain only 2 broadcast senders

with saturated demands. We study both 802.11a and 802.11b using these traces.
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3.9.2 The UW Testbed

We first present the results for the UW testbed in this sectionand then for

our testbed in the next section. Figure 3.10 shows scatterplots of predicted and

actual throughput and goodput under 802.11a.
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Figure 3.10: 2 saturated senders using 802.11a in UW traces.

As we can see, our model closely tracks the actual throughputand goodput.

UW model has higher error in the throughput prediction. Mostmispredictions occur

when the UW model incorrectly predicts that two senders defer to each other. This

error is caused by the linear interpolation heuristics to estimate delivery probability

for a hypothetical RSSI [88]. The heuristic implicitly assumes delivery probability

is linearly proportional to RSSI, which may not be true in reality. Interestingly, UW

model has comparable accuracy to our model in goodput prediction. A closer look

reveals that for many links that have higher throughput error, their goodput is often

close to 0 due to poor link quality. Such cases are easy to predict, which reduces
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overall goodput error.
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Figure 3.11: 2 saturated senders using 802.11b in UW traces.

Figure 3.11 shows the results for 802.11b. As for 802.11a, our model has

more accurate throughput prediction than the UW model, while both models have

comparable prediction errors for goodput.

3.9.3 Our Testbed

For our testbed, we evaluate our model by varying number of senders and

using both saturated and unsaturated demands. Figure 3.12,3.13, 3.14, and 3.15

show scatter plots of throughput and goodput under 2, 3, 4 and5 senders with

saturated broadcast demands.

Since the UW model is only applicable to 2 senders, we comparewith the

UW model only for 2 senders. As we can see, our model tracks theactual through-

put more closely than the UW model, and yields comparable accuracy for goodput
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Figure 3.12: 2 saturated broadcast senders using 802.11a inour traces.
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Figure 3.13: 3 saturated broadcast senders using 802.11a inour traces.
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Figure 3.14: 4 saturated broadcast senders using 802.11a inour traces.
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Figure 3.15: 5 saturated broadcast senders using 802.11a inour traces.
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Figure 3.16: 3 unsaturated broadcast senders using 802.11ain our traces, where
each sender uses 1 mW.

prediction. This is also reflected in RMSE and MAE. For 3, 4, and 5-sender cases,

our model yields estimation close to the actual rates: its RMSE is within 0.12 and

its MAE is within 0.06.

Figure 3.16 shows the results for unsaturated demands, with3 senders. As

for saturated demands, our model maintains high accuracy: its RMSE is within 0.07

and MAE within 0.04.

Summary The testbed evaluation confirms that our model works well in real en-

vironments and using real hardware. Compared with simulation, predicting testbed

performance is much more challenging due to factors such as biased and noisy mea-

surements, as well as environmental variation. Despite these challenges, the results

show that our model is effective in predicting throughput and goodput.
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Chapter 4

Small State and Small Stretch Routing

4.1 Overview

Routing finds paths in a network along which to send data. It isone of

the basic network functionalities. The effectiveness of routing protocols directly

affects network scalability, efficiency, and reliability.With continuing growth of

wireless network sizes, it is increasingly important to develop routing protocols

thatsimultaneouslyachieve the following design goals.

• Small routing state: Using small amounts of routing state isessential to

achieving network scalability. Many wireless devices are resource constrained.

For example, mica2 sensor motes have only 4KB RAM. Limiting routing

state is necessary for such devices to form large networks. Moreover, limit-

ing routing state also helps to reduce control traffic used inroute setup and

maintenance, since the amount of routing state and control traffic is often

correlated.

• Small routing stretch: Routing stretch is defined as the ratio between the

cost of selected route and the cost of optimal route. Small routing stretch

means that the selected route is efficient compared to the optimal route. It
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is a key quantitative measure of routequality, and affects global resource

consumption, delay, and reliability.

• Resilience: Wireless networks often experience frequent topology changes

arising from battery outage, node failures, and environmental changes. Rout-

ing protocols should find efficient routes even in the presence of such changes.

Existing routing protocols either achieve small worst-case routing stretches

with large routing state (e.g.shortest path routing) or achieve small routing state at

the cost of large worst-case routing stretches (e.g.geographic routing and hierar-

chical routing). In this chapter, we present the design and implementation of Small

State and Small Stretch (S4), a new addition to the routing protocol design space.

S4 achieves a desirable balance among these characteristics, and is well suited to

the wireless sensor network setting.

We make the following contributions.

1. S4 is the first routing protocol that achieves a worst-caserouting stretch of 3

in large wireless networks. Its average routing stretch is close to 1.

2. S4’s distance guided local failure recovery scheme significantly enhances net-

work resilience, and is portable to other settings.

3. S4’s scalability, effectiveness of resource use, and resilience are validated us-

ing multiple simulation environments and a 42-node sensor network testbed.
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4.2 Related Work

Routing is a well-studied problem, but large-scale wireless networks have

introduced new challenges. Traditional shortest path routing protocols based on

distance vector or link state algorithms are effective for small networks, but scale

poorly to large networks due to both overwhelming control traffic and the amount

of state to keep at each node. To reduce the overhead, reactive on-demand routing

protocols have been proposed, such as DSR [44] and AODV [80].Their over-

head depends on traffic demands, and they do not work well whenthere are many

source-destination pairs. As shown in [20], DSR and AODV generate more control

traffic than data traffic in 100 nodes with 40 source-destination pairs. Consequently,

routing in large-scale wireless networks has focused on minimizing storage and ex-

change of routing state. In this section, we briefly review the literature of scalable

routing in these categories: (i) geographic routing, (ii) hierarchical routing, (iii)

DHT-type routing, and (iv) theoretical work on scalable routing.

Geographic routing: In geographic routing, each node is assigned a coordinate

reflecting its position in the network. Upon receiving a packet, a node selects a

next hop closer to the destination than itself in the coordinate space. Some ge-

ographic routing protocols use geographic locations as node coordinates, while

others use virtual coordinates based on network proximity.These schemes must

address the problem of getting “stuck” in a local minimum, where no neighbor is

closer to the destination than the current node. Some proposals such as GFG [10],

GPSR [45], GOAFR+ [56], GPVFR [61] and variants use face traversal schemes
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that route packets on a planar graph derived from the original connectivity graph.

Their delivery guarantees [27] depend on the assumption that the planarization al-

gorithms (e.g.GG [28] and RNG [102]) can successfully planarizeany network

graph. These planarization algorithms typically assume a unit disk or quasi-unit

disk model. However, these models can be inadequate for realwireless environ-

ments due to obstacles and multi-path fading. Kimet al. [49] have shown that

model failures in real radio environments can cause routingpathologies and persis-

tent routing failures. CLDP [48] addresses the imperfect RFpropagation problem

using a right-hand probing rule to detect link-crossings and remove them to re-

planarize the graph. The correctness of CLDP comes at a cost of probing each link

multiple times.

GDSTR [62] provides delivery guarantee without requiring planarization

by avoiding routing across the face of planar graphs. Instead packets are routed

through a spanning tree. Each node of the tree is annotated with a convex hull as the

location aggregation of its subtree. The convex hulls are used to determine routing

directions when routing over the spanning tree. The effectiveness of GDSTR has

yet to be demonstrated in real networks. One of the major concerns is that, due to

irregular communication range, the hulls of many pairs of siblings nodes in a tree

may intersect and therefore significantly degrade the efficiency.

The geographic coordinate-based routing schemes have at least three dif-

ficulties for wireless sensor networks. First, accurate geolocation either requires

careful static setting or access to GPS, with consequences for cost or need for line-

of-sight to satellites. Second, geographic distances may lack predictive value for
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network performance (e.g. loss rate). This may result in paths with poor perfor-

mance. Third, even with GPS and ideal radios, the best routing stretch for geo-

graphic routing isO(c) in GOAFR+ [56] and ARF [57], wherec is the length of the

optimal path. Example topologies exist where this bound is tight [57].

Virtual coordinates reflecting underlying network connectivity address the

first two difficulties, but still face the challenge of “dead ends”, for which a recovery

scheme is required. In addition, the overhead of computing and storing virtual

coordinates is not negligible. For example, NoGeo [86] usesO(
√

N) perimeter

nodes to flood theN-node network so that every node can learn its distances to

all the perimeter nodes. Each node determines its virtual coordinate based on the

distances to the perimeter nodes. However, perimeter nodesneed to storeO(N)

pair-wise distances among them. It is not scalable in large wireless networks with

limited memory space per node. GEM [72] achieves greater scalability by using

triangulation from a root node and two other reference nodes. However, the routing

stretch is larger than that typical of geographic routing algorithms, and there is the

additional cost of recomputing routing labels resulting from network failures.

Fonsecaet al. [26] have proposed Beacon Vector Routing (BVR) which

selects a few beacon nodes, and uses flooding to construct spanning trees from

the beacons to all other nodes. A node’s coordinate is a vector of distances to all

beacons, and each node maintains the coordinates of its neighbors. BVR defines

a distance metric over these beacon vectors, and a node routes packets to the one

that minimizes the distance. When greedy routing stalls, itforwards the packet

towards the beacon closest to the destination. If the beaconstill fails to make greedy
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progress, scoped flooding is used. One of the drawbacks of BVRis that each packet

is annotated with a full-length beacon vector (e.g.about 40 entries in a 3200-node

network as suggested in the paper), which is significant overhead.

None of the virtual coordinate-based routing algorithms provide worst-case

routing stretch guarantees. Furthermore, virtual coordinates change with wireless

network conditions, which may incur significant control overhead.

Hierarchical routing: Hierarchical routing is an alternative approach to achiev-

ing scalability. Nodes in a network are divided into clusters. There may be two or

more levels of hierarchies. Typically, each node maintainsfull topological informa-

tion about its local cluster, but only maintains little topological information about

nodes in other clusters. Therefore, routing inside a cluster is optimal, but routing

towards other clusters may traverse a sub-optimal path. Many existing hierarchical

routing protocols have been proposed, including landmark routing [103], HSR [76],

LANMAR [32], ARCH [7], Safari [82] and ZRP [38].

Landmark routing is based on Landmark Hierarchy, which can be dynami-

cally configured. There are a subset of nodes, called landmarks, in the network. A

landmark maintains routing state to other landmarks withincertain radius. Initially,

each router is a landmark of level 0. A subset of level 0 landmarks are landmarks

of level 1, and so on. Higher level of landmarks have larger radius. The radius of

landmarks at highest level is at least the diameter of the network. These are called

global landmarks since all routers can see them. Each node maintains routing state

for landmarks at different levels within corresponding radius. When routing to-
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wards a destination, a node looks up its routing table and routes toward the lowest

level landmark common with the destination. HSR, LANMAR, ARCH and Safari

exploit similar idea of hierarchical clustering. None of them provide routing stretch

guarantee due to the boundary effect: two nodes that are physically close may be-

long to different clusters, hence the route between them hasto go through cluster

heads or landmarks and can be arbitrarily longer than the shortest path.

The clustering technique of ZRP is different. In ZRP, each node maintains

an individual cluster which contains all nodes within a zoneradius. Implicitly, there

are just two levels of hierarchy. Each node proactively maintains routing state for all

nodes in its own cluster. For destinations outside the radius, ZRP uses a query-reply

scheme to establish routes as in reactive on-demand routingprotocols. Although

ZRP can achieve efficient routing stretch for nodes far apart, it may incur large

control traffic overhead as the network scale increases due to on demand routing

request. Furthermore, it is not a trivial decision to make whether to store hard

routing state for destinations outside local clusters. If stored, the routing state may

get arbitrarily large. If not stored, the control traffic overhead may recur for every

destination every time. Overall, it is difficult for ZRP to achieve a desired tradeoff

between routing state and control overhead.

DHT-type routing: Caesaret al. develop VRR [12], a network layer point-to-

point routing protocol inspired by distributed hash tables. Each node is assigned

a location-independent identifier. All nodes are organizedinto a virtual ring in

increasing order of their identifiers. Each node maintains avirtual neighbor set
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containing half closest neighbors clockwise and half counter clockwise. Each node

sets up and maintains routing paths to all virtual neighbors. In addition, each node

also maintains state about paths traversing through it. In the routing table, each

entry specifies two endpoints of a path and the next hop towards each endpoint.

The basic routing strategy of VRR is similar to greedy forwarding in geographic

routing protocols. Among all endpoints in the routing table, the one with identifier

closest to destination is chosen and packets are forwarded to the next hop towards

this endpoint. Since each node maintains state to virtual neighbors on both sides on

the ring, there always exists such an endpoint until reaching the destination. This

forwarding scheme is also used to initialize the paths to virtual neighbors when

each node joins the networks. Therefore, VRR does not require any flooding in the

network. However, VRR still does not provide worst-case routing stretch guaran-

tee, since the proximity on the virtual ring is independent of the proximity in the

physical network.

WSR [1] is another DHT-type routing protocol designed for large scale

highly dynamic networks. It requires location informationof all nodes. It aggre-

gates information about a set of remote locations in a same region, by mapping a set

of ID to a region. The ID-to-region mappings are representedby weak Bloom Fil-

ters. The routing task is accomplished using unstructured random directional walks.

Intermediate nodes prioritize their ID-to-region mappings to bias and forward the

random walk. WSR can tolerate dynamic changes of the networkbecause the weak

state does not require hard limit on expiration. However, WSR may increase path

length compared to traditional geographical routing protocols.
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Theoretical work on scalable routing: Theoretical work [19, 101] on achieving

scalable and efficient routing has developedcompact routingalgorithms that pro-

vide a worst-case routing stretch of 3 while using at mostO(
√

N log N) state in

anN-node network. This worst-case routing stretch is provablyoptimal when each

node uses less than linear routing state [19,101]. While compact routing seems to be

a promising direction for large-scale networks, it cannot be directly translated into a

routing protocol in a distributed network. In particular, the proposed algorithms do

not specify how each node should build and maintain routing state for local clusters

and for beacon nodes. Moreover, the algorithm in [101] requires choosing beacon

nodes offline, considers only initial route construction, and cannot cope with topol-

ogy changes, which precludes realization in our network setting. The implications

of compact routing for average routing stretch also remain unclear.

4.3 S4 Routing Protocol

S4 uses the theoretical ideas of the compact routing algorithm [101] as a

basis, refined by the addition of new techniques needed to obtain a practical rout-

ing protocol for large-scale wireless networks. We first describe the basic routing

algorithm and note challenges for routing protocol design,and then present the S4

routing protocol. Throughout this chapter, our metric for the cost of a route is the

number of links traversed (i.e. hop count).
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4.3.1 Basic Routing Algorithm

In S4, a random set of nodes,L, are chosen as beacons. For a noded, let

L(d) denote the beacon closest to noded, and letδ(s, d) denote the shortest path

distance froms to d. Each nodes constructs the following local cluster, denoted as

Ck(s).

Ck(s) = {c ∈ V |δ(c, s) ≤ k ∗ δ(c, L(c))}, k ≥ 1.

whereV is the set of all nodes in the network. A local cluster of nodes consists

of all nodes whose distances tos are withink times their distances to their closest

beacons. Each nodes then maintains a routing table for all beacon nodes and nodes

in its own clusterCk(s).

d L d’

s

L(d) and L(d’) :
the closest beacon

to d and d’

s=>d: a route that
takes the shortcut  s=>d’: a route via the 

closest beacon L(d’)

s’

s’=>d:a route via the 
shortest path

c
dis in the clusters of c,s’and L
d’ is in the clusters of c’ and L

c’

Figure 4.1: S4 routing examples. Every node within the circle ofd hasd in its local
cluster. The routes′ → d is the shortest path; the routes → d takes a shortcut atc
before reachingL(d); the routes → d′ is throughL(d′) without shortcut.
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As shown in Figure 4.1, when routing from nodes to noded, if d ∈ Ck(s),

we can directly use the shortest path to route froms to d. Otherwise,s first takes

the shortest path towardsL(d), and then use the shortest path to route towardsd.

In the second case, the route does not have to always reachL(d) before routing to

d. Whenever data reaches a nodec whose cluster containsd, c can directly route

to d using the shortest path fromc to d. According to the triangle inequality, the

“shortcut” strictly improves routing stretch. We give the following theorem as an

extension to the proof in [19,101], in which a special casek = 1 is proved.

Theorem 1. Let Ck(s) = {c ∈ V |δ(c, s) < k ∗ δ(c, L(c))}, wherek ≥ 1. If each

nodes maintains next-hop for the shortest path to every beacon andevery node in

Ck(s), the worst-case routing stretch is1 + 2
k
.

Proof. Whend ∈ Ck(s), routing stretch is 1, since we know the shortest path from

s to d. Whend /∈ Ck(s), let r(s, d) denote the cost of selected route froms to d.

r(s, d) ≤ δ(s, L(d)) + δ(L(d), d) (4.1)

≤ δ(s, d) + 2δ(L(d), d) (4.2)

≤ δ(s, d) +
2

k
δ(s, d) (4.3)

= (1 +
2

k
)δ(s, d) (4.4)

The first inequality is due to possible shortcut before reaching L(d). As shown in

Figure 4.1, the shortcutc → d is less thanc → L(d) → d according to trian-

gle inequality. Hences → c → d is less thans → L(d) → d. Equality holds

when there is no shortcut. The second inequality is due to triangle inequality and
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symmetry: the shortest paths → L(d) should cost no more thans → d → L(d).

Finally the third inequality is based on the definition of clusterCk(s) and the fact

thatd /∈ Ck(s). This completes the proof.

As a special case, whenk = 1, a local cluster of nodes consists of all

nodes whose distances tos are closer than their distances to their closest beacons.

This special case is called compact routing [19, 101]. It is particularly interesting,

since it has low worst-case storage cost ofO(
√

N log N) and provides a worst-case

routing stretch of 3. In the remaining chapter we considerk = 1, since it gives

small routing state.

Practical concerns dictate three changes to the TZ compact routing scheme [101]

to achieve S4. First, the boundary conditions of the clusterdefinitions are slightly

different. In S4,C(s) = {c ∈ V |δ(c, s) ≤ δ(c, L(c))}, but in the TZ scheme,

C(s) = {c ∈ V |δ(c, s) < δ(c, L(c))}. That is, nodec is in the cluster ofs in S4

but not in the TZ scheme, ifδ(c, s) = δ(c, L(c)). This change does not affect the

worst-case routing stretch, and reduces average-case routing stretch at the cost of

increasing routing state.

Second, to route towards noded, only L(d) should be carried in the packet

header as the location information in S4. In comparison, theTZ scheme requires a

label(d) = (L(d), port(L(d), d)) for each packet, whereport(L(d), d) is the next

hop atL(d) towardsd. Only with the label carried in the packet header, a beacon

node can forward a packet towardsd using next hopport(L(d), d). It is necessary

in the TZ scheme because the beacon nodes do not store routingstate. However, in
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S4, as a result of the boundary condition change, each beaconnodeL stores routing

state to all the nodes that haveL as its closest beacon node. Given that the total

storage cost of the additional fieldport(L(d), d) in the labels is the same as the

total number of routing entries at beacon nodes in S4 (i.e. both are N), we favor

storing routing state at beacon nodes since it reduces packet header length and the

frequency of updating labels. The frequency of label updates is reduced because

labels are updated only whenL(d) changes but not whenport(L(d), d) changes.

Finally, the TZ scheme proposes a centralized beacon node selection al-

gorithm to meet expected worst case storage boundO(
√

NlogN) in an N-node

network. Since practicality is our main design goal, in S4 werandomly select

beacon nodes in a distributed fashion. It is proved that whenO(
√

N) nodes are

randomly selected as beacon nodes, the average storage coston each node is still

O(
√

N) [100]. As our evaluation results show, the storage cost is still low even

for the worst cases. Note that the worst-case routing stretch of 3 still holds under

random beacon node selection.

4.3.2 Design Challenges

Designing a routing protocol to realize the algorithm proposed in Section 4.3.1

poses the following challenges:

First, how to construct and maintain routing state for a local cluster? Unlike

traditional hierarchical routing, each node has its own cluster in compact routing.

Therefore naive routing maintenance could incur significant overhead.

Second, how to construct and maintain routing state for beacon nodes?
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Knowledge of next-hops and shortest path distances to beacon nodes is important

to the performance of S4. When beacon packets are lost, the routing state could be

inaccurate, which could substantially degrade the performance.

Third, how to provide resilience against node/link failures and environmen-

tal changes? Maintaining up-to-date routing state could beexpensive especially in

a large network. Moreover routing changes take time to propagate. During the tran-

sient period (e.g., the period from the time when failure occurs to the time when

the routing tables at all nodes are updated to account for thefailure), many packets

could be lost without a failure recovery scheme.

To address the above challenges, S4 consists of the following three major

components: (i) scoped distance vector for building and maintaining routing state

to nodes within a cluster, (ii) resilient beacon distance vector for efficient routing

towards beacon nodes and facilitating inter-cluster routing, and (iii) distance guided

local failure recovery for providing high quality routes even under dynamic topol-

ogy changes. Below we will describe these three components in turn.

4.3.3 Intra-Cluster Routing: Scoped Distance Vector (SDV)

In S4, nodes uses the shortest paths to route towards nodes in the clusterof

s. Unlike the traditional hierarchical routing, in S4 each nodes has its own cluster,

which consists of nodes close to nodes. This clustering is essential for providing

a routing stretch guarantee, since it avoids boundary effects. In comparison, hier-

archical routing cannot provide routing stretch guaranteedue to boundary effects,

where two nearby nodes belong to different clusters and the hierarchical route be-
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tween them could be much longer than their direct shortest path.

A natural approach to building a local routing table is to usescoped flooding.

That is, each noded floods the network up toδ(d, L(d)) hops away fromd, where

δ(d, L(d)) is the distance betweend and its closest beaconL(d). Scoped flooding

works fine when the network is initialized, or when there are new nodes joining

the network. But it is costly to send frequent scoped floodingto reflect constant

topology changes, which often arises in wireless networks due to battery outage,

node failures, and environmental changes.

Scoped distance vector:To provide cheap incremental routing updates, we pro-

pose using scoped distance vector (SDV) for constructing routing tables for local

clusters. SDV is attractive because it is fully distributed, asynchronous, and sup-

ports incremental routing updates. SDV is more efficient than scoped flooding es-

pecially under small changes in a network topology, becausea node in SDV propa-

gates routing update only when its distance vector changes while in scoped flooding

a node propagates a flooded packet regardless of whether its distance and next hop

to a destination have changed.

In S4, each nodes stores a distance vector for each destinationd in its cluster

as the following tuple:

< d, nexthop(s, d), δ(s, d), seqno(d), scope(d), updated >

whered andnexthop(s, d) are both node ID,seqno is the latest sequence number

for destinationd, andscope(d) is the distance betweend andd’s closest beacon,
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andupdated is whether the distance vector has been updated since the last routing

update.

A nodes exchanges its distance vectors with its neighbors either synchronously

or asynchronously. Nodes initializes δ(s, c) = 1 for only c ∈ neighbor(s), and

∞ otherwise. Upon receiving a distance vector, a nodec uses the newly received

distance vectors to update its routing state. Nodec further propagates the update for

s only when its current distance froms is belowscope(s) and its distance vector to

s has changed.

Benefits of SDV:SDV supports incremental routing updates. This allows a wire-

less network to dynamically adapt to routing changes. Moreover, unlike traditional

distance vector protocols, SDV does not suffer from the count-to-infinity problem,1

because the scope is typically small (e.g., We evaluate a 1000-node network with

32 beacons, and its average scope is 3.35 and maximum scope is13. This implies

routing loops can be detected within 13 hops).

4.3.4 Inter-Cluster Routing: Resilient Beacon Distance Vector (RBDV)

To support routing across clusters, each node is required toknow its dis-

tances to all beacons. This can be achieved by constructing aspanning tree rooted

from each beacon nodes to every other node in the network. Flooding beacon pack-

ets reliably is important to the routing performance, because loss of beacon packets

1The count-to-infinity problem is that when a link fails, it may take a long time (on the order
of network diameter) before the protocol detects the failure. During the interim routing loops may
exist.
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may introduce errors in estimating the closest beacon and its distance, and degrade

the performance of S4. We develop a simple approach to enhance resilience of

beacon packets.

Routing state construction and maintenance:To construct routing state for bea-

con nodes, every beacon periodically broadcasts beacon packets, which are flooded

throughout the network. Every node then keeps track of the shortest hop count and

next-hop towards each beacon.

Since beacon packets are broadcast and typical MAC protocols (e.g., CC1000

used in sensor motes) do not provide reliability for broadcast packets, it is essential

to enhance the resilience of beacon packets at the network layer. Our idea is to have

a sender retransmit the broadcast packetP until T neighbors have forwardedP or

until the maximum retry countRetrymax is reached.T andRetrymax provide a

tradeoff between overhead and reliability. In our evaluation, we useRetrymax = 3,

T = 100% for beacon nodes, andT = 1/3 for non-beacon nodes.T = 100% for

a beacon node is used because all neighbors of the beacon nodes should forward

the beacon packet. In comparison, for a non-beacon nodec, only a subset ofc’s

neighbors are farther away from the beacon thanc and need to forward the beacon

packet received fromc. Therefore we use a smallerT for non-beacon nodes.

4.3.5 Distance Guided Local Failure Recovery (DLF)

Wireless networks are subject to bursty packet losses and frequent topology

changes. To provide high routing success rate and low routing stretch even in the

presence of frequent topology changes and node/link failures, we develop a simple
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and effective local failure recovery based on distance vectors.

Overview: A nodes retransmits a packet when it does not receive an ACK within

a retransmission timeout. WhenR retransmissions fail,s broadcasts afailure re-

covery request, which contains (i) the next hops used, (ii) whether destinationd is

included ins’s local cluster, and (iii) the distance tod if s’s cluster includesd, or

the distance tod’s beacon otherwise. Upon hearing the failure requests,s’s neigh-

bors attempt to recover the packet locally. Our goal is to select the neighbor that is

the closest to the destination ass’s new next-hop; meanwhile the selection process

should be cheap and easily distributed.

S4 uses distance guided local failure recovery to prioritize neighbors’ re-

sponses based on their scoped distance vectors. Each node uses its priority to de-

termine the time it needs to wait before sendingfailure recovery response. We

further exploit broadcast nature of wireless medium to avoid implosion of recovery

responses.

Distance guided local failure recovery:Our goal is to prioritize neighbors based

on their distances to the destination so that the nodes closest to the destination can

take over the forwarding. The problem is non-trivial, because the distance to the

destination is not always available. When the destination is outside the local cluster,

a neighbor only knows the distance to the destination’s closest beacon, but not the

distance from that beacon to the destination.

To address the issues, each node computes its priority usingthe algorithm

in Figure 4.2. It involves two main scenarios. In the first scenario,s’s local cluster
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// Priorities from highest to lowest: 1, 2, 3, 4
if(d ∈ C(s))

if(d ∈ C(self)) // d is ins’s andself ’s clusters
priority = δ(self, d) − δ(s, d) + 2;

else // d is only ins’s cluster
priority = 4;

end
else if(d ∈ C(self)) // d is only in self ’s cluster

priority = 1;
else //self is outsides’s andd’s clusters

priority = δ(self, L(d)) − δ(s, L(d)) + 3;
end

Figure 4.2: Computing priority using scoped distance vectors and beacon distance
vectors

contains the destinationd. This information is available ins’s failure recovery

request. Thens’s neighbor is assigned one of the four priorities using the following

rules. The neighbors that haved in their clusters are assigned the top 3 priorities,

since they can directly route towards destination using theshortest path. In this case,

each neighbor knows its distance to the destination, and assigns itself a priority

based on the difference betweenδ(self, d) and δ(s, d). Neighbors whose local

clusters do not contain the destination are assigned the fourth priority, which is the

lowest.

In the second case, whens’s cluster does not contain the destinationd, only

the neighbors that haved in their clusters are assigned the highest priority, since they

can directly route towards the destination. The other nodesare assigned priorities

by comparing their distances to the beacon withδ(s, L(d)).
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A senders selects the neighbor from which it receives the response first as

the new next-hop. By assigning each neighbori with a timerpriority(i) × m + rand ,

a higher priority node sends the response earlier and is thusfavored as the new next-

hop node. To avoid collisions, we add a small random timerrand to the priority-

based timer so that different nodes are likely to respond at different times even when

assigned the same priority. To avoid response implosion, upon hearing a failure re-

sponse tos from someone else, the current node cancels its own pending recovery

response if any. Our evaluation usesm = 50ms, andrand ranges from 0 to 49ms.

Node failures vs. link failures: The above scheme works well for link failures.

When a node fails, all the links to and from the failed nodes are down. Therefore we

need to avoid using nodes that use the failed nodes as next hop. This can be done by

letting the sender specify the failed node. Only the nodes that use different next hop

from the failed node will attempt to recover. In practice, itis difficult to distinguish

between a link failure and a node failure. Always assuming a node failure may

unnecessarily prune out good next-hops. So we first optimistically assume that the

next hop does not fail, only the link is down. Therefore we allow nodes with the

same next hop to recover the packet. When the number of failedattempts pass a

threshold, we prevent the nodes from using the same next hop to recover the packet.

4.3.6 Other Design Issues

Location directory: So far we assume that the source knows which beacon node

is closest to the destination. In practice, such information may not be directly avail-

able. In such situation, the source can apply the location directory scheme de-
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scribed in BVR [26] to lookup such information. More specifically, beacon nodes

are responsible for storing the mapping between non-beaconnodes and their clos-

est beacons. The closest beacon information for nodei is stored atH(i), whereH

is a consistent hash function that mapsnodeid to beaconid. The source contacts

the beacon node whose ID isH(dest) to obtain the closest beacon todest. The

storage cost of location directory is much smaller in S4 thanthat in BVR, because

the source in S4 only needs to know the closest beacon to its destination while the

source in BVR needs to know the distance between its destination and all beacon

nodes. Moreover, in S4 when destinationd is in s’s cluster, no location lookup is

required sinces knows the shortest path tod, whereas BVR as well as other geo-

graphic routing schemes always require location lookup on anew destination. Such

property is especially beneficial when traffic exhibits locality ( i.e., nodes close to

each other are more likely to communicate).

Beacon maintenance:When a beacon fails, S4 applies distance guided local fail-

ure recovery to temporarily route around the failure. If thefailure persists, we can

apply the beacon maintenance protocol proposed in [26] to select a new beacon.

Beacon maintenance is not the focus of this chapter. Instead, we focus on the rout-

ing performance during the transient period after failuresoccur.

Link quality: Link quality significantly affects routing performance. Wedefine

link quality as the delivery rate of packet on the link in a given direction. In S4,

each node continuously monitors its links to/from its neighbors. We adopt a passive

link estimator layer developed in [26,106] for estimating link quality. When a node

receives a beacon packet or SDV update, it first checks ifboth the forward and
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reverse link qualities of the sender are above a threshold (30% is used in our current

implementation). Only those updates from a sender with goodlink quality in both

directions will be accepted.

4.4 TOSSIM Evaluation

We have implemented a prototype of S4 in nesC language for TinyOS [41].

The implementation can be directly used both in TOSSIM simulator [63] and on

real sensor motes. In this section, we evaluate the performance of S4 using ex-

tensive TOSSIM packet-level simulations. By taking into account of actual packet

transmissions, collisions, and losses, TOSSIM simulationresults are more realistic.

Our evaluation considers a wide range of scenarios by varying the number of

beacon nodes, network sizes, network densities, link loss rates, and traffic demands.

More specifically, we consider two types of network densities: a high density with

an average node degree of 16.6 and a low density with an average node degree of

7.6. We use both lossless links and lossy links that are generated byLossyBuilder

in TOSSIM. Note that even when links are lossless, packets are still subject to

collision losses. In addition, we examine two types of traffic: a single flow and 5

concurrent flows. The request rate is one flow per second for single-flow traffic, and

5 flows per second for 5-flow traffic. The simulation lasts for 1000 seconds. So the

total number of routing requests is 1000 for single-flow traffic, and 5000 for 5-flow

traffic. We compare S4 with BVR, the implementation of which is available from

the public CVS repository of TinyOS.

The performance metrics we are interested in are:
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• Routing Success Rate

• Routing Stretch

• Control Traffic Overhead

• Routing State

• Node Load of Data Traffic

4.4.1 Routing Performance

First we compare S4 with BVR under stable network conditions. To reach

stable network conditions, we let each node periodically broadcast RBDV and SDV

packets every 10 seconds. Data traffic is injected into the network only after route

setup is finished. BVR uses scoped flooding after a packet falls back to the bea-

con closest to the destination and greedy forwarding still fails, whereas S4 uses the

distance guided failure recovery scheme to recover failures. To make a fair compar-

ison, in both BVR and S4 beacon nodes periodically broadcastand build spanning

trees, and RBDV is turned off in S4.

4.4.1.1 Varying the Number of Beacons

We vary the number of beacon nodes from 16 to 40 while fixing thetotal

number of nodes to 1000.

Routing success rate:We study 4 configurations: a single flow with lossless links,

a single flow with lossy links, 5 flows with lossless links, and5 flows with lossy
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links. Figure 4.3 shows the results of all 4 configurations. “HD” and “LD” curves

represent results under high and low network densities, respectively.
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Figure 4.3: Compare routing success under different numbers of beacons, network
densities and traffic patterns.

We make the following observations. First, under lossless links with 1 flow,

S4 always achieves 100% success rate. In comparison, BVR achieves close to

100% success only in high-density networks, but its successrate reduces to 93%

under low network density with 16 beacons. Why does BVR not provide delivery

132



www.manaraa.com

guarantee even under perfect channel condition? The reasonis that, scoped flood-

ing is invoked after a packet is stuck at the fallback beacon,and scoped flooding

could cause packet collisions and reduce packet delivery rate. Second, under lossy

links with 5 flows, packet losses are common, and the performance of both S4 and

BVR degrades. Nevertheless, S4 still achieves around 95% routing success rate in

high-density networks, while success rate of BVR drops dramatically. The large

drop in BVR is because its scoped flooding uses broadcast packets, which have no

reliability support from MAC layer; in comparison, data packets are transmitted in

unicast under S4, and benefit from link layer retransmissions. Third, the success

rate is lowest under low-density networks, with lossy linksand 5 flows. Even in

this case S4 achieves 70% - 80% success rate, while the success rate of BVR is

reduced to below 50%.

Routing stretch: Figure 4.4 compares the average routing stretch of S4 and BVR.

The average routing stretch is computed only for the packetsthat have been suc-

cessfully delivered. Although the worst stretch of S4 is 3, its average stretch is only

around 1.1 - 1.2 in all cases. In comparison, BVR has significantly larger routing

stretch: its average routing stretch is 1.2 - 1.4 for 1 flow, and 1.4 - 1.7 for 5 flows.

Moreover its worst routing stretch (not shown) is 8.

Another interesting observation is that the routing stretch in S4 is consis-

tently low regardless of the number of beacon nodes, whereasthe routing stretch of

BVR is more sensitive to the number of beacons. The reason is that S4 reason that

S4 routing stretch remains low under various numbers of

does not have clear impact on routing stretch. This can be explained as
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Figure 4.4: Compare routing stretch under different numbers of beacons, network
densities, and traffic patterns.

follows. On one hand, fewer beacon nodes result in larger local clusters. Intra-

cluster routing, which is always optimal, happens more frequently. On the other

hand, more beacon nodes provide more opportunities for better inter-cluster routing

(in the extreme case where all nodes are beacon nodes, the routing stretch is always

1).

Transmission Stretch: As shown in Figure 4.5(a), the transmission stretch of S4

is close to its routing stretch, while the transmission stretch of BVR is much larger

than its routing stretch due to its scoped flooding. Figure 4.5(b) shows CDF of trans-

mission stretches under 32 beacon nodes. We observe that theworst-case transmis-

sion stretch in S4 is 3, and most of the packets have transmission stretch very close

to 1.

Control traffic overhead: Compared with BVR, S4 introduces extra control traffic

of SDV to construct routing tables for local clusters. To evaluate this overhead, we
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Figure 4.5: Transmission stretch comparison

count the average control traffic (in bytes and number of packets) that each node

generates under lossless links and a single flow. We separatethe global beacon

traffic and local SDV traffic. The results are shown in Figure 4.6. Note that beacon

traffic overhead is the same for both S4 and BVR.

We can see that when the number of beacons is small, the SDV traffic dom-

inates, since the cluster sizes are relatively large in suchcase. As the number of

beacons increases, the amount of SDV traffic decreases significantly. In particular,

when there are 32 beacons (≈
√

1000), the amount of SDV traffic is comparable to

the amount of global beacon traffic.

Routing state: We compare routing state of S4 and BVR as follows. For S4, the

routing state consists of a beacon routing table and a local cluster table. For BVR,

the routing state consists of a beacon routing table and a neighbor coordinate table.

We first compare the total amount of routing state in bytes between S4 and BVR.
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Figure 4.6: Control traffic overhead under different numbers of beacons and net-
work densities

Figure 4.8(a) shows the average routing state over all nodes. We make the

following observations. First, network density has littleimpact on the routing state

of S4, but has large impact on BVR. This is because in S4 the local cluster sizes

are not sensitive to network density (when density increases, the scope tends to

decrease), while in BVR each node stores the coordinates of its neighbors and its

routing state increases with density. Second, the amount ofrouting state in BVR

increases with the number of beacons. In comparison, S4’s routing state does not

necessarily increase with the number of beacons, since increasing the number of

beacons reduces the local cluster size. Third, when the number of beacons is 32

(≈
√

1000) or above, the routing state in S4 is less than BVR. Similar results have

been observed in other TOSSIM configurations.

Figure 4.8(b) further shows the number of entries in beacon routing table,

local cluster table and neighbor coordinate table. The beacon table curves of S4
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Figure 4.7: control traffic overhead w/ lossy links (5 flows)

and BVR overlap, since it is common for both. Note that although the coordinate

tables in BVR have fewer entries than the cluster tables in S4, the total size of the

coordinate tables are generally larger since the size of each coordinate table entry

is proportional to the number of beacons.

Table 4.1 shows maximum routing state of S4 and BVR under highdensity

and low density. The maximum number of routing entries is around 4.5 times of
√

1000 (the expected average cluster size), but still an order of magnitude smaller

than 1000 (the flat routing table size) in shortest path routing. This suggests that

random beacon selection does a reasonably good job in limiting worst-case storage

cost.

max S4 state (B) max BVR state (B) max S4 routing entries
HD 680 960 136
LD 715 920 143

Table 4.1: Maximum routing state of S4 and BVR
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Figure 4.8: Routing state comparison under different numbers of beacons and net-
work densities with lossy links (single flow)

Node load: Figure 4.9 shows the average number of packets that each nodetrans-

mits, under lossless links and 5-flow traffic. Figure 4.9(a) shows the beacon node

load, and Figure 4.9(b) shows non-beacon node load. We observe that in S4 both

beacon nodes and non-beacon nodes experience lower load than those nodes in

BVR. This is due to lower routing stretch and transmission stretch in S4. In addi-

tion, we observe that in S4, the beacon load is within a factorof 1.5-2 of non-beacon

load, which means the load is reasonably balanced among beacon and non-beacon

nodes. Similar results are observed under single flow traffic.

4.4.1.2 Varying Network Size

We also evaluate the performance and scalability of S4 when the network

size changes from 100 to 4000. For each network sizeN , we selectK ≈
√

N

nodes as beacon nodes. We only include results under lossless links and a single
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Figure 4.9: Node load of data traffic under different numbersof beacons and net-
work densities with lossless Links (5 flows)

flow. The results for other configurations are similar.

Figure 4.11(a) shows the average transmission stretch of S4and BVR un-

der different network sizes. The error bars represent 5- and95- percentiles. S4

achieves smaller transmission stretches and smaller variations in the stretches. In

BVR, packets experience higher medium stretch and higher stretch variation due to

greedy forwarding and scoped flooding.

Figure 4.11(b) shows the average routing state. For both S4 and BVR, the

routing state tends to increase withO(
√

N). This suggests both S4 and BVR are

scalable with network sizes. In particular, even when the network size is 4000,

majority of nodes can store the routing state in a small portion of a 4KB RAM (the

RAM size on Mica2 motes we experimented with). Moreover, S4 uses less routing

state than BVR when the number of beacon nodes is
√

N , because the coordinate

table size in BVR is linear to the number of beacon nodes.
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Figure 4.10: non-beacon load of data traffic w/ lossy links (5flows)
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Figure 4.11: Comparison under different network sizes
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Figure 4.12 shows the average control traffic generated overall nodes un-

der lossless links and a single flow. The three curves represent total traffic, beacon

traffic, and local SDV control traffic, respectively. The amount of local traffic is

consistently smaller than that of beacon traffic under
√

N beacon nodes. Since bea-

con traffic is the same in S4 and BVR, the total control traffic for route construction

in S4 is comparable to that of BVR. The difference is further reduced when traffic

for location directory setup is included.

success
rate

routing
stretch

transmission
stretch

control
traffic (B)

routing
state (B)

S4 1 1.07 1.08 96 158
BVR 0.994 1.20 1.31 46 232

Table 4.2: Performance comparison in 100-node networks.

To further study the performance of S4 in smaller networks, we compare

S4 and BVR in networks of 100 nodes. We include the results forthe case of
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single flow traffic with lossless links. Results are similar for other configurations.

Table 4.2 shows that in 100-node networks S4 outperforms BVRin terms of routing

success rate, routing stretch, transmission stretch, and routing state. S4 incurs more

control overhead than BVR due to the extra SDV traffic, thoughits overall control

traffic (after including location directory setup traffic) is still comparable to that of

BVR.

4.4.2 Impact of RBDV

Next we evaluate resilient beacon distance vector (RBDV). We turn off pe-

riodic transmissions of beacon and SDV messages so that the failed transmissions

of these messages have to be recovered using RBDV but not using periodic bea-

con transmissions. This is an interesting scenario to consider because we want to

minimize the frequency of periodic broadcasts while still achieving high delivery

rate. Each beacon broadcasts once. Other nodes who receive abeacon packet fur-

ther broadcast it. Similarly, a non-beacon node broadcastsits own scoped distance

vector once. A node further broadcasts a SDV only if it is inside the scope.

We simulate for single-flow data traffic with lossless links,and compare the

routing success rate between the case with and without RBDV.In both cases, DLF

is enabled. Packet collisions are common when nodes broadcast beacon packets or

scoped distance vectors. As shown in Figure 4.13, without RBDV, the success rate

is around 90%. With RBDV, the success rate is improved to close to 100% because

RBDV helps to improve accuracy of the routing tables.
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Figure 4.13: Impact of RBDV on success rate (1000 nodes, low density)

4.4.3 Impact of Node Failures

To evaluate the performance of S4 under node failures, we randomly kill a

certain number of nodes right after the control traffic is finished. Different from

the experiments in [26], we start node failures from the beginning, i.e. the control

traffic is also subject to node failures. We distinguish between beacon and non-

beacon failures,

Figure 4.14 shows that failure recovery can significantly increase the suc-

cess rate under both non-beacon and beacon failures. DLF in S4 is more effective

than the scoped flooding in BVR for the following reasons. First, scoped flooding

results in packet collisions. Second, S4 uses unicast for data transmissions and ben-

efits from link layer retransmissions. Third, if some node between the beacon and

destination fails, DLF can recover such failures, while scoped flooding cannot.

Next we compute the average routing stretch over all successfully delivered

packets. As we expect, packets going through failure recovery take longer than
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Figure 4.14: Impact of DLF on success rate (1000 nodes, 32 beacons, low density)

normal paths. Interestingly, as shown in Figure 4.15, the average routing stretch

is only slightly higher than the case of no failure recovery,which indicates the

robustness of S4.

Summary Our TOSSIM evaluation further confirms that S4 is scalable tolarge

networks: the average routing state scales withO(
√

N) in anN-node network. The

average routing and transmission stretches in S4 are around1.1-1.2. This is true

not only in lossless networks under single flow traffic, but also under lossy wire-

less medium, packet collisions arising from multiple flows,and significant failures.

This demonstrates that S4 is efficient and resilient. In comparison, the performance

of BVR is sensitive to wireless channel condition. Even under loss-free networks,

it may not provide 100% delivery guarantee due to possible packet collisions in-

curred in scoped flooding. Its routing and transmission stretches also increase with

wireless losses and failures.
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Figure 4.15: Impact of DLF on routing stretch (1000 nodes, 32beacons, low den-
sity)

4.5 Testbed Evaluation

We have deployed the S4 prototype on a testbed of 42mica2 motes with

915MHz radios on the fifth floor of ACES building at UT Austin. While the testbed

is only moderate size and cannot stress test the scalabilityof S4, it does allow

us to evaluate S4 under realistic radio characteristics andfailures. We adjust the

transmission power to -17dBm for all control and data trafficto obtain an interesting

multi-hop topology. With such a power level, the testbed hasa network diameter of

around 4 to 6 hops, depending on the wireless link quality. 11motes are connected

to the MIB600 Ethernet boards that we use for logging information. They also

serve as gateway nodes to forward commands and responses forthe remaining 31

battery-powered motes.2

2Unfortunately, we are unable to compare S4 against BVR in ourtestbed. Current BVR imple-
mentation requires all motes have Ethernet boards connected to send and receive routing commands.
However our testbed only has 11 motes with Ethernet connections, which would make the evaluation
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Figure 4.16: Testbed measurement
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Figure 4.16(a) shows a snapshot of the network topology. We measure

packet delivery rates by sending broadcast packets on each mote one by one. Two

motes have a link if the delivery rates on both directions areabove 30%. Because

no two nodes will broadcast packets at the same time, the measurement result is

optimistic in the sense that channel contention and networkcongestion is not con-

sidered. The average node degree is8.7. We observe that a short geographic dis-

tance between two motes does not necessarily lead to good link quality. Some of

the links are very asymmetric and their qualities vary dramatically over time. As

shown in Figure 4.16(b), some of the links are highly asymmetric and their qualities

vary dramatically over time. For example, the link qualities between motes 4 and

31 fluctuate as time goes by and are quite asymmetric, while link qualities between

motes 1 and 15 are fairly stable to 100% delivery rate, until in the last one hour

when they suddenly drop to almost 0%. Such link characteristics allow us to stress

test the performance and resilience of S4.

4.5.1 Routing Performance

We randomly preselect 6 nodes out of 42 nodes as beacon nodes for S4.

The distance from any node to its closest beacon is at most 2 hops. After 10 min-

utes of booting up all the motes, we randomly select source and destination pairs

to evaluate routing performance. The sources are selected from all 42 motes and

the destinations are selected from the 11 motes that are connected to the Ethernet

boards. All destinations dump the packet delivery confirmation through UART to

less interesting.

147



www.manaraa.com

time period # pkts per sec routing success rate
0 - 70.1 min 1 99.9%

70.1 - 130.2 min 2 99.1%

Table 4.3: Routing success rate in the 42-node testbed.

the PC for further analysis. For each routing request, unless the source is connected

to an Ethernet board, we choose the gateway mote that is the closest to the source to

forward a command packet. The command packet is sent with themaximum power

level, and up to 5 retransmissions so that the source is very likely to receive it. Upon

receiving the routing request, the source will send back a response packet with the

maximum power level and potential retransmissions, to acknowledge successful

reception of the routing request. Each routing request is tagged with a unique se-

quence number to make the operation idempotent. The data packet will be sent

(with the reduced power level) after the command traffic to avoid interference.

We send routing requests at 1 packet per second for the first 70minutes

(altogether 4210 packets), and then double the sending ratethereafter for another

60 minutes (altogether 7701 packets). As shown in Table 4.3,the routing success

rate is 99.1-99.9%, and consistent over time. This demonstrates the resilience of S4

in a real testbed.

Next we use multiple constant bit rate (CBR) flows to increasethe network

load. In each multiple flow test, we randomly pickn source destination pairs, and

instrument the sources to send consecutive packets at the rate of 1 packet pers

seconds. This is essentially havingn/s random flows per second. The flows start

after a predefined idle period to avoid potential collisionswith the command traffic.
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Figure 4.17: Routing success rate under multiple concurrent flows

We chooses = 2, and test up to 6 concurrent flows (i.e., n is up to 12). For each

experiment, we repeat it for 10 times. Figure 4.17 plots the median routing success

rates in different flow settings. The error bars indicate thebest-case and worst-case

routing success rate. We see the median success rate gracefully degrades with an

increasing number of concurrent flows. Our log collected from the gateway motes

indicates that some of the failures are due to the limitationof single forwarding

buffer per node. Such failure happens when two or more flows try to concurrently

route through the same node. Note that this is not a protocol limitation in S4. We

could remove many such failures by having a more complete implementation with

multiple forwarding buffers, which will be part of our future work.

Finally we study the routing efficiency of S4. Note that it is impossible to

calculate the true routing stretch in a real wireless network because the topology

is always changing and the packet loss rates depend on the traffic pattern so that

the optimal routes are changing, too. Instead, we compare S4against thepseudo

optimal hop countmetric. The pseudo optimal hop count of a route is defined as
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the shortest path length in asnapshotof the network topology. In our experiment,

we use broadcast-based active measurement to obtain the pairwise packet delivery

rates before the routing test starts. The delivery rates areaveraged over 1-hour mea-

surement period. Note that the real optimal routes could be either better or worse

than the pseudo optimal ones due to topology changes, and thedelivery rates tend

to be optimistic due to no packet collision in the measurement. The routing tests

follow the measurement within 30 minutes. We randomly select source and des-

tination pairs and send routing requests at 1 packet per second for 5000 seconds.

Then we change the number of beacons from 6 to 3, and repeat thesame test. The

shortest paths from the topology snapshot are computed offline. Figure 4.18 shows

that more than 95% of the routes are within 1-hop difference from the pseudo opti-

mal hops under 6 beacons. Interestingly, S4 sometimes achieves better performance

than the pseudo optimal scheme. This is because during the 5000-second routing

experiment, S4 adapts to the change of topology so that it cantake advantages of
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new links and reduce path lengths. The number of beacons alsohas both positive

and negative effects on routing performance. When fewer beacons are selected,

the nodes tend to have larger routing tables so that more nodes can be reached via

the shortest paths; however, having fewer beacons also leads to more control traffic

so that the link estimator will have a more pessimistic estimation on link quality

due to packet collision. Underestimating link quality apparently hurts the routing

performance.
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Figure 4.19: Routing table size

In the same experiment, we also study the routing state per node in S4.

Figure 4.19 compares the numbers of local routing table entries used under 6 and

3 beacons. Using 6 beacons yields smaller routing tables. A node in S4 has local

routing state towards its neighbor unless the neighbor is a beacon node. Therefore

the number of routing entries at each node is generally larger than the number of

its neighbors. We find that on average, when 6 beacons are used, the routing table

has only 3 more entries than a typical neighborhood table, which suggests that the
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routing state in S4 is small.

4.5.2 Routing Under Node Failures

To stress test the resilience of S4, we artificially introduce node failure in

our testbed. We randomly select non-gateway motes to kill one by one, and study

the routing performance. We send one routing request per second for 50 minutes,

altogether generating 3000 packets. The source node is randomly selected from the

current live nodes and the destination is one of the gateway motes. Note that we do

not start any SDV update or beacon broadcast after the initial setup stage in order

to study the effectiveness of the failure recovery mechanism alone.
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Figure 4.20: Routing performance under node failure

As shown in Figure 4.20, in the first 30 minutes, even when 20 motes are

killed, including a beacon node, the routing success rate isstill close to 100%.

The routing success rate starts to drop after 30 minutes, dueto congestion at some

bottleneck links. When the second beacon is killed, the network is partitioned and
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more routing failures are expected. The third major performance degradation occurs

after all 31 non-gateway motes are dead, which causes further network partitions.

These results show that S4 is resilient to failures.

Summary Our evaluation in the 42 node testbed shows that S4 achieves close to

100% routing success rate in a normal condition with a singleflow. Meanwhile

S4 degrades gracefully with an increasing number of packet collisions (in multiple

concurrent flows) and node failures.
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Chapter 5

Conclusions and Future Work

In this section, we summarize the contributions of the dissertation and give

directions for future work.

5.1 Conclusions

MWNs bring new fundamental challenges to network management. First,

multihop connections make localization more difficult since nodes are not in direct

range of anchor points. Second, interactions among nodes add significant complex-

ity in modeling and understanding wireless interference. Third, effective routing

control is hard when network scale increases. To address these challenges, we de-

velop (i) probabilistic region-based localization algorithms, (ii) a general model of

wireless interference, and (iii) a scalable routing protocol for large MWNs.

• Probabilistic Region-Based Localization:We propose distributed, proba-

bilistic region-based algorithms for localization under multihop connections.

The algorithms take simple binary connectivity measurements as basic lo-

cation constraints. The mutual constraints among nodes aremodeled in the

computations of probability distributions. To improve accuracy, the algo-

rithms can also take additional measurements, such as finer-grained connec-

154



www.manaraa.com

tivity, layout maps and angle information. Furthermore, weextend the basic

algorithms to enhance robustness of localization. Throughextensive simu-

lations, we verify that our algorithms can achieve high accuracy with low

computation cost, and tolerate significant measurement errors.

The accuracy of our algorithms is attributed to their probabilistic nature. It

handles uncertainty and errors better than deterministic approaches that es-

timate locations as single points. With iterative computations of probability

distributions, nodes can take advantage of estimations from each other for

refinement even they are multiple hops away.

• A General Model of Wireless Interference:To study wireless interference

and its impact, we develop a general interference model. It takes simple RSSI

measurements from real networks and models the interdependencies among

transmissions and receptions of the nodes. It allows us to accurately estimate

the throughput and goodput in static multi-hop wireless networks. Compared

to existing measurement-based models, our model can handlearbitrary num-

ber of senders, unicast transmissions, and non-saturated traffic demands. It

provides a powerful tool to conduct what-if analysis and helps find optimal

network configurations, such as power and channel assignment.

At the core of our model is ap-persistent CSMA approximation to 802.11

DCF. This methodology can be generalized and applied to model MAC pro-

tocols other than 802.11. The main difference is that individual node’s state

transition probabilities should be computed based on the MAC protocol to be

modeled. TheN-node Markov chain framework would still be applicable.

155



www.manaraa.com

• Small State and Small Stretch Routing:For routing control in large scale

MWNs, we present a new routing protocol, Small State and Small Stretch

(S4), which jointly minimizes routing state and routing stretch. S4 is a unique

addition to the routing protocol design space. Specifically, it is the first rout-

ing protocol that achieves a worst-case constant routing stretch of 3, using

O(
√

N) routing state per node, in anN-node large scale wireless networks.

And it employs a distance guided local failure recovery scheme to signifi-

cantly enhance network resilience to failures. We evaluateS4 with both sim-

ulations and testbed experiments, and demonstrate that S4 simultaneously

achieves scalability, efficiency, and reliability.

S4 adapts the idea of compact routing. It shows an example of protocol design

guided by existing results in theory research area. How to make theoretical

results work in reality is not trivial. Many new problems arise in real im-

plementation. In our case, we combine new techniques with basic compact

routing to obtain a practical routing protocol for large scale MWNs.

5.2 Future Work

Management in MWNs has received little attention until recently. This dis-

sertation makes preliminary efforts in addressing some of the challenges involved

in this area. There are many interesting directions to explore for future work. We

briefly describe several possible topics for measurement, modeling, and control.
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• Measurement:Measurement has been more and more important in network-

ing research, since it reflects the true state of underlying networks. Auto-

matic, efficient, and accurate measurements are desired in MWNs manage-

ment. For our interference model, the RF profiling still needs improvement.

Currently, we estimate RSS using average RSSI. This estimation may be bi-

ased for lossy links, because we can only directly measure RSSI for received

packets. How to estimate RSS for lossy links is an interesting subject for

future work.

• Modeling: Our interference model estimates throughput and goodput oflinks.

In practice, traffic may traverse more than one link. What users see, and hence

care more about, is end-to-end performance of a data flow. A future direc-

tion to extend the current model is to estimate end-to-end throughput and

goodput based on the estimations of links. For the extended model, we are

given end-to-end traffic demands and routing, from which we need to derive

per hop demands. Then we can apply the current model to estimate per hop

performance, and finally estimate the end-to-end performance.

• Control: In current implementation of S4, we use the simplest routingmetric,

hop count. However, hop count metric is not always correlated with network

performance. In fact, since long hops usually have poor quality, a route of

fewer but longer hops may have higher loss rate. It is therefore preferred to

use more performance-relevant metrics. To guarantee the worst-case stretch

of 3, the routing metrics must be additive and symmetric. ETXsatisfies the
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conditions and is a promising choice of metrics for S4. However, ETX of a

link may change due to variations of channel conditions. It is a challenging

issue to maintain routing states up-to-date with ETX.

Mobility poses similar problem to routing control. Node movement can cause

frequent topology changes, which may invalidate existing routing states. Mo-

bility is common in MANETs. Mesh networks may also have low tomedium

node mobility. Therefore, it is important for routing to support mobility.

With current design of S4, it may require frequent broadcastof beacon dis-

tance vector messages and scoped distance vector messages,which invoke too

much overhead, to maintain routing states consistent with topology changes.

New mechanisms are needed to reduce such overhead while still achieving

the trade-off among scalability, efficiency, and reliability.

Finally, there are many other controls to explore in future,such as channel

assignment, power control, node placement, etc. Each of them has significant

impact on network performance. The output from the interference model can

guide these controls to achieve optimal performance.
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