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Multihop wireless networks are becoming a new attractivammanication
paradigm owing to their low cost and ease of deployment. gengamultihop
wireless networks, however, is especially challengingtdue fluctuating wireless
medium, presence of wireless interference, and the inagadasmand for them to

scale to large sizes.

This dissertation tackles the multihop wireless networkagement chal-
lenges by systematically integrating measurement, maglelnd control. On the
measurement and modeling side, this dissertation develapsvel probabilistic
region-based localization algorithm to accurately deteemode locations with
limited and noisy measurement information. The dissemafurther develops a
general model of wireless interference to estimate thrpugand goodput between
arbitrary pairs of nodes in the presence of interferenca fother nodes in a wire-

less network. Our model advances state of the art in inemter modeling by (i)
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estimating interference among an arbitrary number of ssndi&) modeling uni-
cast transmissions, and (iii) modeling the general casetefrbgeneous nodes with
different traffic demands. On the control side, we invesédane of the most im-
portant network control problems — design of routing protedor large wireless
networks. We developed a new routing protocol, Small State @mall Stretch
(S4) to jointly minimize routing state and routing stret84 uses a combination of
beacon distance-vector based global routing state anédabgtance-vector based
local routing state to achieve a worst-case stretch of 3guSin/N) routing state
per node in an N-node network. Its performance benefits atediudemonstrated

in extensive simulation and testbed experiments.
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Chapter 1

Introduction

The past decade has seen enormous development in wiretbssliggies.
The technology advances boost the growth of diverse weelesvorks, from single-
hop wireless networks (SWNSs) to multi-hop wireless net@dMWNS). In SWNs,
such as cellular networks and wireless local area netwdKsANSs), every node
is within one hop of a central entity (base stations, acces#$). Users only com-
municate with the central entity. SWNs require much infiasture support, hence
are expensive to deploy. In comparison, nodes in MWNs camuamcate with
each other over multiple hops. MWNSs require no or little astiructure support.
They are easy to deploy and cost-effective. Examples of Mvidiside mobile
ad-hoc networks (MANETS), wireless sensor networks (WSaI) wireless mesh
networks (WMNs). MWNs provide a platform for a broad rangeapplications,
both special-purpose(g.search and rescue, environment monitoring) and general-
purpose €.g. broadband wireless Internet access). Therefore they htraetad
more and more interests from researchers, network desigaad users. However,
MWNs are very difficult to manage, due to fluctuating wirelessdium, the pres-
ence of wireless interference, and the increasing demarttide to scale to large
sizes. This dissertation tackles the challenges in MWNsagament by systemat-

ically integrating measurement, modeling and control.
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1.1 Background on Multi-hop Wireless Networks (MWNS)

The initial research on MWNSs started in the early 1970’s wbacket radio
networks were studied. There were limited prototypes i kfd military depart-
ments. MWNSs received much wider attention since late 9@anks to the IEEE
standardization efforts and the commercial success inegsaetworks. Currently,
there are three prevailing types of MWNs: MANETSs, WSNSs, ankllMé. In this

section, we give a brief background on these networks.

1.1.1 Mobile Ad Hoc Networks (MANETS)

A mobile ad-hoc network consists of a collection of “peer”iile nodes
that are capable of communicating with each other witholg frem a fixed in-
frastructure. Each node is an end user as well as a router.inféreonnections
between nodes may change on a continual and arbitrary bésdes within each
other’s radio range communicate directly via wirelessdinkhile those that are far

apart use other nodes as relays in a multi-hop fashion.

MANETS are suited for scenarios where an infrastructuresdus exist,
e.g.in disaster recovery situations where existing commuitnatetworks are de-
stroyed. It is much quicker to deploy MANETS than rebuildihg infrastructure
in these scenarios. MANETS are also proper choices for camwations on battle
fields where military units may move constantly and multpltonnectivity may be

desired.

There has been extensive research on MANETS, especialMA rout-

ing and transport issues [104].
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1.1.2 Wireless Mesh Networks (WMNSs)

Generally, the nodes in a WMN can be categorized into twoses$4]:
mesh routerandmesh clientsMesh routers are nodes at the core of a WMN. They
are dedicated for relaying traffic. Some mesh routers ar@extiad to Internet
through wired links. These routers act as gateways betweesless users and
Internet. Mesh routers may provide ethernet interfacesseysuwithout wireless
network interface cards (NICs). Mesh routers are usuadlficst Mesh clients are
wireless nodes at user side. They are the sources and diestinaf the data traffic.
They also have the option to participate in routing. An exenVgMN is shown in

figure 1.1.

WMNs can be deployed over a metropolitan area, or over a cantynu
neighborhood. WMNSs target at general-purpose civilianliagpons,e.g.broad-
band wireless Internet access, community networking atedligent transportation

systems.

The unique application scenarios have driven much res¢dfam WMNSs,

particularly on performance, scalability and reliabilisgues.

1.1.3 Wireless Sensor Networks (WSNSs)

A wireless sensor network consists of potentially large benof sensors,
which are small, low-cost, low-power, and resource-c@nséd devices. Same as
in MANETS, operations of WSNs do not require infrastructsmpport. Sensors can
propagate the sensed and partially-processed data ovéplebbps. Furthermore,

there are usually some sink nodes in WSNs, which are redgerfsir collecting
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Internet

—_— Wired .
connectio

wireless,
connectio

Figure 1.1: An example wireless mesh network. Three reptatee paths: (1)
C2-R2-R1-Internet; (2) C1-R2-R3-C5; (3) C3-C4-R4-C6

the data. These sink nodes may send the data to a process#ingauwther wired

or wireless links.

WSNs are especially suited for environment monitoring indnéd or inac-
cessible places. Sensors are deployed densely and ranohotimése places. WSNs
can also be useful in health care to monitor and assist pati@ther applications

include surveillance and targeting systems, smart horoe, et

Many research efforts have been made on WSNs. Especiadygeeffi-
ciency, fault tolerance and scalability [3] are among th#vaagesearch topics due

to resource constraints of sensors.
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1.2 Motivation

Multihop wireless networks are becoming a new attractivamanication
paradigm owing to low cost and ease of deployment, and havelfmore and more
applications. However, to fully achieve the promising teas of MWNs, many re-
search problems [3] [4] [11] still remain to be solved, susimatwork management,
cross-layer protocol design and analysis, wireless sgcetc. These problems
may exist in other types of wireless networks too, but thegob@ much more
complicated in MWNSs. In particulanetwork managemeing a challenging prob-
lem in MWNs due to multihop connections, wireless intenfee and increasing

network scales.

1.2.1 Whatis Network Management?

Network management involves so many issues that it is hago/éoa short

definition. In [16], the author gives an intuition:

“Intuitively, network management encompasses tasks agsdavith
planning, deploying, configuring, operating, monitoririgning, re-

pairing, and changing computer networks.”

Network management, manual or automatic, is needed ondevankés es-
tablished. Simply put, there are three phases in managiegnrk: measurement
modeling andcontrol, as figure 1.2 shows. A management process may involve

one or more of three phases.
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initial
planning

Measurement:
network connectivity
node distance
interference
throughput

delay

etc.

current
state

Modeling: optimization,
impact of wireless topology chang
interference etc.

Control:

routing

power adjustment
channel assignment
node placement
fault diagnosis and repai
etc.

r

desired
state

Figure 1.2: Three phases in network management
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After the initial planning and deployment, network managetrmay start
with measuring the current network statey.topology (network connectivity, node
distance, interference, etc.), traffic (sources and dasins, transport protocol,
etc.), and performance (throughput, delay, etc.). Thiselmllects information

about how the network performs under current configurations

The modeling phase abstracts and formalizes the geneed aldout the
interrelationshipse.g. the impact of wireless interference, among the nodes and
links. These rules may apply to any arbitrary network, natessarily limited to
the specific network of interest. Modeling phase takes nreasents from real
networks as input. With modeling, the managing entities @arve information
that is otherwise expensive or difficult to measure dire@ly.physical locations
of nodes. Modeling also provides managing entities theluéifyato apply what-if
analysis, and infer the performance under other configamati Such analysis and
inference can help managing entities determine the desg®gork configuration

from possible choices.

Finally, the managing entities control the network behatased on the
output from the modeling phase,g.tuning or repairing the network to improve
performance or achieve quality of service (QoS) requirdmeiossible control
parameters are routing mechanisms, channel assignnasTgptission power, node

placement, etc.

The above process of network management may repeat oveplautkra-
tions for optimization purpose. It may also repeat becabngaéetwork conditions

change due to link failures, traffic turning on or off, enviroental changes, etc.
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1.2.2 Challenges in MWNs Management

The difficulty of network management increases dramaticalbng with
the complexity of the network structure and traffic. Patacy, MWNs pose new

challenges to all three phases in network management.

Multihop connections: Compared to nodes in SWNs, nodes in MWNSs are con-
nected in multiple hops. Moreover, MWNs do not have sufficiefrastructure
support. Consequently, measurement tasks such as |dealiaae more difficult to
accomplish in MWNs than in SWNSs, since most nodes are noimiathmmunica-

tion ranges of central entities.

Wireless interference: Understanding the impact of interference on real networks
is extremely difficult, since interactions among nodes in M$\are more compli-
cated than in SWNs. Each node can be a source, destinati@veara router.
Different nodes may have different traffic demands. Due tngimenons such as
hidden terminal and exposed terminal problems in MWNSs simr@iasions from one
node may potentially affect not only neighboring nodes, dsb nodes far away.

Therefore it is much more difficult to model the impact of nfiéeence.

Large scale:MWNs such as WSNs and WMNSs are expected to span a large scale,
with respect to both number of nodes and size of the covenage &VSNs may
consist of tens of thousands of sensors, while WMNs may dbeeisands of nodes

in a metropolitan area. Controlling such a large-scale agtyparticularly routing,

is a challenging issue.
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1.3 Contributions of the Dissertation

This dissertation tackles the challenges in MWNs managéimesystem-
atically integrating measurement, modeling and contral.tki® measurement and
modeling side, this dissertation addreseeslization under multihop connections
andmodeling of wireless interferenc&hey do not directly change the way MWNs
operate, but provide useful information for control of netlkss. On control side,

this dissertation addressesiting in large scale MWNs

The contributions of this dissertation are a set of appreséb MWNs man-
agement. Specifically, we propose (1) probabilistic regpased algorithms for lo-
calization under multihop connections, (2) a general maldai captures impact
of wireless interference and predicts network throughmat goodput, and (3) a
small state and small stretch routing protocol that aclsessalability, efficiency,

and reliability.

1.3.1 Probabilistic Region-Based Localization

Localization is to determine the physical locations of Wss nodes in the
network. Providing location service is desired in MWNs ngaraent. It can
improve performance of MAC and routing protocols. It als@lges location-
dependent applications. Centralized localization apgrea exist to obtain loca-
tion information. But they either are too costly.g.GPS [34]), or target at single-
hop localizationé.g.activeBadge [105], RADAR [6], VORBA [73]). In this disser-
tation, we focus on distributed localization in MWNSs. Altigh many distributed

localization algorithms have been proposed [42, 95, 96, ftlowing three top-
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ics require further study: First, developing accurate liaafion algorithms using
only connectivity information. Node connectivity is uslyatorrelated with node
locations. However, connectivity constraints may not biigantly strong to pin-
point a node. Therefore assigning the location of a wiretegke to a single point
may result in significant error. Second, leveraging add#lonformation on loca-
tion constraints. Localization accuracy relies heavilytba amount of available
information about location constraints. To further impe@ccuracy, it is impor-
tant to identify and exploit additional information on Idicen constraints. Third,
enhancing robustness of localization against erronedasmation. Robustness is
essential to the success of any localization scheme simopezius measurement
reports may arise from measurement errors, loss of measuatatata, and hard-

ware/software problems.

Our solution to localization problem has following threevahies. First, we
develop probabilistic region-based localization aldorns, including using static
grids, dynamic meshes, and segments of grids. Second, wesgseveral tech-
niques to extract and leverage additional information aation constraints. The
additional information can be applied to both our and otHecslization schemes.

Third, we develop techniques to enhance robustness ofzatiah.

In our probabilistic region-based approach, we use a reioapresent a
node’s estimated location. Each node derives a probaliiltlyibution over a set
of cells in its region that it can possibly reside in. Everyl &g associated with
a probability about the likelihood that it contains the tqesition of the node.

Starting from a small set of anchor nodes whose locationkm@ogn €.g.from

10
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GPS), our approach iteratively refines the probabilityrdigtions using location
constraints, such as connectivity measured from the uyidgnhetwork. A location
constraint from nodel to nodeB gives a probability distribution over the cells of
B. The final probability of each cell is the product of the proities derived from

all constraints, followed by normalization.

We also propose to measure and leverage additional locagimstraints: (i)
network connectivity under different transmission powerels, which gives finer
distance constraints, (ii) knowledge of carrier-sengipjR], which gives extra dis-
tance constraint, (iii) layout maps, which restrains palssiegions, and (iv) con-

nectivity under directional antennas, which gives anglest@ints.

Furthermore, our probabilistic region-based localizattan be extended
naturally to handle measurement errors and enhance rassstithe probability
computation can take into account of the extent to whichdhation constraints are
satisfied. In this way, a mesh cell that is inconsistent widstiocation constraints
is assigned a low probability and pruned out, whereas a mabsbatisfying most

location constraints (but not necessarily all the constsaiwill still be retained.

We evaluate our localization approach with extensive satnhs. The re-
sults show that our approach provides a wide range of tréfdeestween accuracy
and computation costs, making it suitable for differengee/of MWNSs, such as
WSNs and WMNs. The results also verify additional locationstraints can sig-
nificantly improve the accuracy. Moreover, we demonstrateemhanced scheme
for robustness can achieve high accuracy even in the presdgrgignificant mea-

surement errors.
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1.3.2 A General Model of Wireless Interference

Wireless interference is fundamental to the performancwiodless net-
works. Understanding wireless interference is essermtitiddé design and manage-
ment of wireless networks. However, it is extremely difftdolaccurately estimate
interference and its impact on network performance duedatmplicated inter-
actions among nodes in real networks. Despite significaogress on modeling
wireless network performance, several important issued tebe addressed in or-
der to accurately model wireless interference. First, #igtieg models for general
network topologies can only handle two broadcast sendewsaflows. Modeling
wireless interference in the presence of an arbitrary nurabsenders is signif-
icantly more challenging due to the complex interaction®m@gndifferent nodes.
Second, the existing models for general network topologidg consider broad-
cast traffic. A unicast transmission is more common, butblves transmissions
in two directions: data and ACK. Hence modeling unicastgnaissions introduces
additional complexities. Third, real networks often cahsif heterogeneous nodes
with different traffic demands and different radio charastes. It is therefore es-

sential for the interference model to support such hetereige

To study wireless interference and its impact, we develogreecal interfer-
ence model that allows us to accurately estimate the thymutgdnd goodput from
real measurements in static multi-hop wireless networkemgared to existing
measurement-based models, our model advances the staténofieee important
ways. First, it goes beyond pairwise interference and edaminterference among

an arbitrary number of senders. Second, it goes beyond tastilansmissions and
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models the more common case of unicast transmissions. ,Tihcdn accurately
model interference in a heterogeneous environment withranp (non-saturated)

traffic demands, asymmetric link quality, and non-binatgiference relationships.

Our model captures the interdependencies among the tresioms and re-
ceptions of all nodes. The inputs to the model aretraffic demand from each
sender to each receiver , and RF profile, which refers to the received signal
strength (RSS) between every pair of nodes. The outputsharthtoughput and
goodput, normalized by MAC layer data rate. We obtain the Ri¥flp from simple
measurements. For ai-node network, our model requiréy V) measurements,
the minimum to build an RF profile for al nodes. In the measurement phase, each
node broadcasts in turn, while othi®r— 1 nodes listen and record received signal
strength index (RSSI) information for each received packebm these measure-
ments, we recover pairwise RSS and background interferdunedo sources other
than nodes in the modeled network (Section 3.7). Then, wiy app sender model
to estimate the amount of traffic sent by each sender undgitée demand and our
receiver modefo estimate the amount of traffic successfully received shturated
broadcast demands, our model can estimate throughput aaiphgoby computing
the stationary probabilities of a Markov model. For uniacksihands or unsaturated
broadcast demands, the transition matrix of the Markov rhioglelves additional

variables and its stationary probabilities are solved iitenative framework.

To validate our model, we conduct extensive simulationsgitie Qualnet
simulator [84] and real experimental measurements froneless testbeds. The

results show that our model gives accurate prediction owgd@range of scenarios.
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1.3.3 Small State and Small Stretch Routing

Routing is a functionality of finding paths and controllifgetpackets to
follow them. The effectiveness of routing protocols ditgetffects network scal-
ability, efficiency, and reliability. With continuing graw of MWNs scales, it is
difficult yet important to develop routing protocols tisnultaneoushachieve the
following design goals: First, small routing state. Usimgadl amounts of routing
state is essential to achieving network scalability. ltuess the storage require-
ment to form large networks. It also helps to reduce contadfit in route setup
and maintenance, since the amount of routing state andotdraffic are often
correlated. Second, small routing stretch. Routing dtrestdefined as the ratio be-
tween the cost of selected route and the cost of optimal r@xtell routing stretch
means that the selected route is efficient compared to thealptoute. Given the
limitation on routing state, it is a challenging issue toiagh small routing stretch.
Third, resilience. Wireless networks often experiencguent topology changes
arising from link failures, and environmental changes. Howind efficient routes

for instant recovery is difficult.

We present a new routing protocol, Small State and SmalkcBtrEs4),
which jointly minimizes the state and stretch. S4 is a unigddition to the routing
protocol design space. It is the first routing protocol tithtieves a worst-case con-
stant routing stretch of 3, usin@(v/N) routing state per node, in asi-node large
scale wireless networks. It significantly enhances netweskience employing a

distance guided local failure recovery scheme.

S4 exploits the theoretical ideas of the compact routingréttygm [101]. In
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S4, a subset of nodes are chosen as beacon nodes. Each natlEnmsai local
cluster according to its distance to the closest beaconoBdists of the following
three major components: (i) scoped distance vector fodimgland maintaining
routing state to nodes within a cluster, (ii) resilient bmadistance vector for ef-
ficient routing towards beacon nodes and facilitating Hetaster routing, and (iii)
distance guided local failure recovery for providing highatity routes even under

dynamic topology changes.

S4 starts with measurement phase, in which nodes learn aietwork
topology. First, beacon nodes broadcast global beaconagesso the whole net-
work. Each node measures its “distance” to a beacon upotliviege beacon
message. Then, each node sends scoped cluster messagdise\sitope being its
“distance” to the closest beacon. Upon receiving any ctustssage, a node adds

the source of the message into its local cluster.

With the above measurements of topology, each node canotomér rout-
ing to achieve scalability, efficiency, and reliability. dfanode maintains state,
I.e.next hop and cost, of optimal routes to beacon nodes and modssocal clus-
ter. The routing criteria are as follows: if a destinatiomishin the local cluster
(intra-cluster routing), a node forwards packets alongtttenal route; if a destina-
tion is outside the local cluster (inter-cluster routing)yode first forwards packets
along the optimal route to the beacon closest to the destimaand then to the
final destination. When a route failure occurs, the forwagdnode broadcasts a
recovery request message to neighbors. Upon receivingegcoeply messages,

the forwarding node chooses the neighbor closest to thendéash for recovery.
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We evaluate S4 using both simulations in TOSSIM, a packettEmulator
for large-scale WSNs, and experiments in a 42-node WSNddsOSSIM simu-
lations fully stress the scalability, while the testbedexments evaluate S4 under
realistic RF and failure dynamics. The results show thatsSecalable, efficient,

and resilient to failures in a wide range of scenarios.

1.4 Organization

This dissertation is organized as follows. Chapter 2 prissitie probilistic
region-based localization approach. We start with bagjordhm and then pro-
pose techniques to improve accuracy and computation cdephsons to leverage
additional location constraints, and enhancement to aehigbustness. We show
evaluation results from simulations. Chapter 3 introdubesnterference modeling
problem and presents a general measurement-based mogelirgent results are
shown to verify the accuracy of the model. Chapter 4 presgdtsouting proto-
col. We first describe theoretical idea and the three majorpmments of S4. Then
we evaluate it using both TOSSIM simulations and testbe@ix@nts. Finally,

Chapter 5 concludes and gives possible directions fordéutesearch.
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Chapter 2

Probabilistic Region-Based Localization

2.1 Overview

Determining the physical location of wireless nodes is ingutt to a wide
variety of applications, ranging from geographic routid§,[86] to context-aware
applications [52, 55], from habitat monitoring [13] to ermiment surveillance [5,

08].

A global positioning system (GPS) [34] can be used to obtw@ation in-
formation. But it requires line-of-sight communicationtiwvthe satellites, and does
not work in either indoor or outdoor environments with lofobstacles€.gurban
area). It is also costly to equip every wireless node with GR# limitation of
GPS has motivated researchers to develop algorithms tolodfation using cheap
hardware by leveraging network connectivity, signal ggtepand angle-of-arrival
information [6,40,42,68, 73,95, 96, 105]. Despite extemsesearch in the area of

localization, the following three topics in localizatiogsearch require further study.

First, developing accurate localization algorithms basednly connec-
tivity information is an active research topic. A major faicthat determines the
effectiveness of the algorithms is how the estimated looatiare represented. In

many previous studies, the location of a node is estimateal @sgle point. As
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shown in [24], there are often many coordinate assignmbatsatisfy the location
constraints derived from an underlying network. Therefgsigning the location
of a wireless node to a single point may result in significandre For example,
as described in [35], when a node is constrained to be lodtéxlir corners of a
region, a single point estimation may place the node at theecavhich is mislead-
ing. In addition, a single point representation is vulné&db measurement errors
— a small perturbation in measurement data may result inge kdifference in the
estimated location [71]. The novel approaches, propose@digtyan et al. and
Guha et al. [29, 35], are to represent the estimated locasanregion that consists
of all points satisfying the location constraints. Suchgiop-based representation

has the potential to yield higher accuracy.

Motivated by [29, 35], we also use a region to represent a’'s@imated
location. To achieve even higher accuracy, we propose aapilidtic localization
approach. In this approach, each node derives a probatbiitstbution over a set
of cells that it can possibly reside in. Every cell is ass@davith a probability
about the likelihood that it contains the true position @ ttode. Furthermore, we
propose two techniques to reduce computation cost. Thadthhique combines
cells into segments, which significantly reduces comporatost with a moderate
increase in localization error. The second technique isda@rrobabilistic dynamic
mesh-based localization (PDM). It uses a mesh generatartiipn a region into
a mesh, and represents the estimated location of a wireteksas a set of mesh
cells. Ititeratively refines the estimated location usimggltion constraints extracted

from the underlying network. It achieves high accuracy byuiteg the probability
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distribution of a node’s position over the region. It aclegweasonable cost by
adaptively changing the mesh cell size using DistMesh [@hjch is an efficient

way to generate an unstructured triangular and tetrahedrsh to cover a region.

Second, localization accuracy relies heavily on the amotiatailable in-
formation about location constraints. For example, as shiow[23], there is a
fundamental limit in localization accuracy using commgd02.11 hardware. To
further improve accuracy, additional information on lacatconstraints is neces-
sary. In this dissertation, we propose the following wayslbtain and leverage
additional information: (i) using network connectivity der different transmission
power levels, (ii) using knowledge of whether two nodes camse each other’s
carrier, which can be measured empirically as shown in {2]uging layout maps,
and (iv) using more powerful anchor nodesg, the anchor nodes can not only ex-
tract distance constraints for its neighbors, but alsoinlitee approximate angles).

We also evaluate the benefit of each type of such additiof@inration.

Third, therobustnessssue in localization has received little attention, even
though robustness is essential to the success of any latafizscheme since we
cannot expect that measurements are always accurate.eBu®measurement re-
ports may arise from measurement errors, loss of measutetatsy and hard-
ware/software problems. Our probabilistic region-basezhlization provides a
natural mechanism to handle measurement errors — the plibbamputation can
take into account of the extent to which the location comstsare satisfied. In this
way, a mesh cell that is inconsistent with most location traings is assigned a low

probability and pruned out, whereas a mesh cell satisfyiogtihocation constraints
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(but not necessarily all the constraints) will still be iat.

In summary, while localization has been an extensivelyistiidubject, our
approach has the following three novel contributions. tFinge develop proba-
bilistic region-based localization algorithms, incluginsing static grids, dynamic
meshes, and segments of grids. These algorithms provideéearamge of trade-off
between accuracy and cost. For example, the segments-dyasexhch yields low
cost and high accuracy, and is well suited for networks fariog less powerful
nodes, such as sensor networks. In comparison, the PDMvash&higher ac-
curacy at a higher cost, making it suitable for networks fedrby more powerful
nodes, such as mesh networks. Second, we propose sevéradbtess to extract
and leverage additional information on location constgimhe additional infor-
mation can be applied to both our and others’ localizatidrestes. Our results
show that the additional information can significantly iroye localization accu-
racy. Third, we develop techniques to enhance robustndesalization, and show

that the enhanced algorithm can tolerate significant efrons measurement data.

2.2 Related Work

Localization has been extensively studied due to its grapbrtance. We
broadly classify previous work into the following four asedi) localization over
single-hop wireless connections, (ii) localization oveultimop wireless connec-
tions, (iii) analysis of the fundamental limitations of &ization schemes, and (iv)

controlling node placement to ease localization.
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Localization over single-hop wireless connections: For localization over single-
hop wireless connections, nodes are one hop away from anckes whose loca-
tions are known. Many approaches have been proposed inréas slost of them
localize users or hosts inside an office building. The gémpecaedure is similar for
all approaches: first, estimate relative locatioaig @istance, angle) of nodes with
respect to anchors; then, infer absolute locations froative locations. However,
there are many different ways to estimate distance or angihgjing with infrared,
radio signal, ultrasound; Time Difference of Arrival; Argbf Arrival, etc. Ac-
cordingly, the techniques applied to infer locations caxlifferent as well, such as

trilateration, triangulation, data-fitting, etc.

Active Badge [105] is a location system for in-building Itization of of-
fice staff. Staff members wear infrared (IR) badges thapgeally transmit unique
identifiers. Sensors are deployed as anchors around thertmutb receive IR sig-
nals from badges. A central location server polls sensaratatignals from badges
and determines locations of staff members based on whicdoezhear the signals
from their badges. Active Badge locates staff members ttetret of rooms where
they are sighted. It requires support from extra infragtmecof sensors, which may

incur high cost of deployment.

RADAR [6] tackles the problem of localization for radio fieency (RF)
based wireless networks in in-building environments. lieseeon signal strength
measurement gathered at multiple receiver locations &rehéte locations of users
by triangulation. Three base stations record signal streofjbeacons from hosts.

In off-line phase, signal strength information as a functd location is collected.
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Then in real-time phase, the base stations measure sigeradjgt from a host to be
localized, and infer its location that best matches theectdld data. The accuracy
of RADAR depends on the accuracy of the signal strength mépated in off-
line phase. When the signal strength varies significaatfyflue to people moving

around, it may require to measure a new signal strength map.

Cricket [83] is another location system for in-building &épations. Bea-
cons are deployed at strategic locations inside a buildBgacons send out mes-
sages to advertise their location information. Each maliktatic device is equipped
with a listener. Listeners receive messages from beacahser their own loca-
tions from these messages. For a listener to determine stende to beacons,
Cricket uses a combination of RF and ultrasound signalsh Eawe a beacon ad-
vertises its location over an RF signal, it concurrentlydsean ultrasonic pulse.
A listener listens to both RF signals and ultrasonic pulaad, uses the difference
between the arrival time of radio and ultrasound signalsstoraate distance to
beacons and further infer its location. As in RADAR, the a#idns of RF sig-
nal strength may also affect the accuracy of Cricket. In twidithe placement of

beacons is nontrivial and increases cost.

VORBA [73] is an indoor 802.11 positioning system. It expddhe idea of
VOR (VHF Omnidirectional Ranging) using 802.11 hardwareistomized VOR
base stations are equipped with directional antenna oeghagenna array to mea-
sure both angles and ranges. A host can measure its anglewal §AOA) of
signals from a base station, relative to the center direaifdhe strongest signals.

It can also estimate its range to a base station based orgav&gmal strength (SS)
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from all angles. A host determines its location based on AGEasurements (tri-
angulation), ranges (trilateration), or a combination athb VORBA also requires

support from special infrastructure.

In [39], Haeberieret al. build a system using probabilistic techniques for
localization across an office building. The whole buildisgdivided into a set of
cells with fixed sizes, typically one cell per office. In thesfistep to obtain train-
ing data, base station scans are conducted to cover ergmeofeach cell. Then
for each base station, the distribution of its signal inisesin a cell is inferred
by fitting the training data to a normal distribution. Firyala probability distri-
bution over cells is calculated to represent location esion. Compared to this
work, our approach derives probability distributions eliéintly. Instead of relying
on detailed signal intensity maps which are subject to uiptable variations, our
approach calculates probability distributions based @ation constraints among
nodes. Moreover, in our approach, the cell sizes are not ixeé@daptive to esti-

mation confidence.

In [68], Madiganet al. develop an indoor positioning system based on
Bayesian graphical models. It simultaneously locates afsefreless clients (as
opposed to localizing one user at a time). The system rexjdatasets of received
signal strength (RSS) measurements from base stationgtdsclThe models cap-
ture the relationships between locations and RSS. Theitosatre inferred by

applying Bayesian analysis to the models.

SeRLoc [60] is a range-independent localization algoriuited for wire-

less sensor networks. The network consists of a small nuiblecators with
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known locations and a large number of sensors to localizeh E&ator is equipped
with an array of sectored antennas. Sensors are equippedmitidirectional an-

tennas. Locators transmit beacon messages containimgtedinates and direc-
tions of antenna boundary lines. Beacons from different¢ramas cover different
sectors. Given the locator-to-sensor communication raamgensor can infer its lo-
cation after receiving beacon messages. The final estimigtibe center of gravity
(CoG) of the intersection region of several sectors. SeRls&s a grid score table

to find the intersection region.

A zero-configuration system is proposed in [67] for indoardkization. It
takes on-line RSS measurements between 802.11 APs, wigaksad to analyze
the effects of multi-path fading and environmental vadia§ on RSS and create a
mapping between RSS and geographical distance. A clierdunesaRSS from APs
and then estimates its distance to APs from the signalrdistenap (SDM). A gra-
dient descent method is applied to estimate location of lieatdhat minimizes an
objective function. The assumption behind this systemas for an office building,
RSS between APs and RSS between clients and APs have siefatagonship with
distances. This assumption may be problematic considérmdifferent locations
of clients and APs: APs are usually mounted on walls or otlign places while
clients are often on desks. There is normally more humanIimoaround a client

than around an AP.

Thunder [107] is a centralized localization scheme fordaygtdoor WSNSs.
A centralized device broadcasts sound, together with rsidiwal containing its lo-

cation. Each sensor can estimate its distance to the loaaitibe centralized device
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using Time Difference of Arrival (TDOA) approach upon regeg the sound and
radio signal. The centralized device moves to three diffemencollinear locations,
so that each sensor obtains distances to three noncolfipeds and localizes itself

using trilateration.

Localization over multihop wireless connections: In MWNSs, nodes are often
multiple hops away from anchor nodes, therefore the lonatiocertainty is in-
creased and localization is even more challenging. A nurabatteresting local-
ization algorithms have been proposed for such networkavdw error accumula-
tion, majority of the algorithms infer locations of nodesfoymulating a constraint
problem and solving it using some commonly used technigDes. key difference
between the algorithms is how the location is represerdagyith a single point
or a region. Location-dependent applications usually iregsingle point repre-
sentation as the final location estimation. But the interiatedestimations during
localization process do not always have to be single poiDiferent algorithms

may have different representations.

In [92], Savvideset al. develop a distributed localization approach that it-
erates through a two-phase process: ranging and estimddonng the ranging
phase, each node estimates its distance to its neighboeseasduring the estima-
tion phase, nodes use the ranging information and theihbeig whose positions
have been determined to estimate their own locations. Idlafop work [93],
the authors enhance the previous approach by formulatengritblem as a global

non-linear optimization problem. This limits error accuation arising in [92].
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In [96], Shanget al. propose to use multi-dimensional scaling (MDS) to de-
termine location in a centralized fashion. MDS is a techaitiat can calculate co-
ordinates from a matrix of pairwise distances. The locélireaccuracy is limited
partly because it cannot handle violation of triangulatjespecially for irregular-
shaped networks). Later they develop a distributed MDS®dapproach in [95].

It is shown to out-perform the centralized version in irfegtshaped networks by

ignoring the distance information among nodes that aredarta

In[17], Costeet al. introduce a distributed weighted-MDS algorithm, dwMDS,
for localization in WSNSs. It assigns larger weights to marewuaate range measure-
ments. Similar to [95], it essentially ignores distancenesation between out-of-
range sensors by giving them 0 weight. In dwMDS, each nodptaedy updates

its location estimation by minimizing a local cost function

In [9], Biswaset al. relax the localization problem to a semidefinite program
(SDP) problem, and solve the problem using standard SDRitpoés. To deal with
noisy measurements, the authors develop two extensiohs twasic SDP problem:

a maximum likelihood based formulation and an interval ddsemulation.

In [71], Moore et al. present algorithms that use robust quadrilateral for
localization. Their approach finds sets of four nodes thatfialty connected, and
localizes the fourth node based on the positions of the d¢iinee nodes. To prevent
error accumulation, the four-node set needs to satisfystofpuadrilateral condi-

tions. This improves accuracy at the cost of leaving somesaodlocalized.

In [42], Hu et al. propose a sequential Monte Carlo localization (MCL)
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method to enhance the accuracy of localization by explpiirobility. In particu-
lar, the approach leverages mobility history to predictsias locations based on
previous location samples and current movement, and usesetlv connectivity

information to eliminate inconsistent location samples.

In [91], Rudafshanket al. propose MSL and MSL* to improve and gen-
eralize MCL. The sampling procedure in MCL is modified to wankstatic net-
works. Each node only uses information from neighbors wiétidy location es-
timates Convergence time and execution time of MSL and MS#¥*faster than

MCL, therefore the accuracy is improved for mobile networks

In [65], Li et al. present REP for localization in anisotropic WSNs where
holes exist. The basic idea is to better estimate distartoeslea two sensors by ren-
dering a shortest path around intermediate holes. Eacbiseresaisures its distances

to three seeds whose locations are known, then infers idgitotby trilateration.

Unlike most of the previous approaches, which represeatried locations
using points, [97] and [35] present approaches that reptégeations as regions.
In [97], the whole space is divided into a rectangular gridrofll squares. Location
estimates are represented by a set of squares calculatetbfration constraints. In
[35], regions are represented with Bezier curves. Suchraseptation is shown to
significantly improve accuracy. Motivated by these appheacin this dissertation
we also use region-based representation. Our approacHasedt in two ways.
First, we represent regions with dynamic mesh cells wittptida sizes. Second,
we derive probability distribution over the cells. It ackee high accuracy and

robustness without incurring significant computation cost
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Lastly, a set of probabilistic localization algorithms @resented in [77,78,
85]. For each sensor in the network, they derive a probghligtribution over the
whole deployment area. Each position in the area is assdcwith a probability
of the sensor being placed at that position. Eventually]dbation of a sensor is
estimated as the position with highest probability. Thégeréhms assume normal
distribution of RSS or AOA measurements, and calculate gdvdity distributions
using distance or angle constraints. Different from thear, approach does not
assume any distribution of RSS or AOA. In its basic form, gd& only connectiv-
ity information. It calculates probability distributiooff discrete cells and reduces

computation cost by adaptively controlling the cell sizes.

Analysis of limits on localization accuracy: In addition to developing novel lo-
calization algorithms, researchers have also analyzefiitttamental limits on lo-
calization algorithms. The limits can be about the accuddgcation estimations,

or whether a node can even be localizable.

The authors in [23] compare a series of localization alparg, and find
that using commodity 802.11 technology over a range of dlyos, approaches
and environments, it is expected to have a median locadlizatiror of 10 feet and
97th percentile error of 30 feet. They conclude that thes#dtions are fundamen-
tal and unlikely to be significantly improved without fundantally more detailed
environmental models or additional localization infrasture. It points out that

leveraging additional information is necessary in ordantprove the accuracy.

In [33], Goldenberget al. study partially localizable networks, in which
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some nodes cannot be uniquely localized due to lack of locatonstraints. The
authors identify a sufficient condition for a node to be ueiguocalizable, and
develop algorithms to determine which nodes are uniquelglipable and which

are not.

Node placement: Complementary to localization algorithms, node placenaént

gorithms have also been designed to reduce location antyigui

In [87] Ray et al. apply the theory of identifying codes to determine the
placement of sensors so that each position is uniquelyifahby a set of sensors
that it can directly communicate with. The authors furtheead their algorithms

to tolerate errorsd.g, sensor failures).

In [24], Erenet al. show that a network has a unique localization if and
only if its corresponding grounded graph is generally gliybagid. Applying
graph-rigidity literature, they develop approaches tostarcting uniquely localiz-
able networks, and study the computation complexity oflimation. Node place-
ment algorithms are complementary to localization alpong. The localization
algorithms should be applicable even when we do not have eékibifity to alter

the graph to make it uniquely localizable.

2.3 Probabilistic Dynamic Mesh-Based Localization

As mentioned in the previous section, an important charatteof various
localization approaches is how the estimated locationpsesented. To achieve

high accuracy and robustness, we adopt a region-basedeapaEon, where an
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estimated location is represented as a region that cows$isligoints satisfying the
location constraints extracted from the underlying nekwYe further improve the
existing work [29,35] by deriving a probability distribati over the region to reflect
the likelihood of the true position. Such probability distition, combined with
an explicitly represented region, provides much richeatmn information than
a single position, and allows us to achieve higher accunadgde of insufficient

information and measurement errors.

Below we first present a probabilistic region-based loedian approach.
Then we describe two techniques to improve the efficiencyhefapproach. The
first one combines multiple horizontal (or vertical) celis &n estimated region)
into a single segment, which reduces computation cost agxpense of slightly
higher error. The second technique is based on a dynamic, nvbsine mesh cells
are dynamically adjusted according to the size and shapbeofdgion. It can

achieve both efficiency and accuracy.

2.3.1 Probabilistic Region-Based Localization

The probabilistic region-based localization proceedsodevfs. First, ev-
ery node’s location is initialized to be the entire spaceeeach node extracts
location constraints by measuring the connectivity of thdarlying network, and
propagates these constraints to nodes within a certaindwag. (\We use 3 hops
in our evaluation.) If angle and received signal strengtiein(RSSI) measure-
ments are available, they can be used to extract locatiostieonts and processed

in a similar way. Based on the constraints reported by otleles and its own
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observation, a node estimates its new location by pruninghsusub-regions that
are inconsistent with the constraints. For the sub-regibasare consistent with
the constraints, a node further computes a probabilityibigton over them. The

approach is run in a distributed way.

Extracting location constraints: To estimate its location, a node first extracts
location constraints from the underlying network. Examspiélocation constraints
include “the distance between nodand nodej is at mostd” (also called distance
constraints), and “the angle between liijeand the direction of North is within
[01,0-]" (also called angle constraints). Such location constsatan be obtained
by measuring network connectivity and angle-of-arrivad.this section, we only

consider distance constraints. We will consider angle ttaimés in Section 2.5.1.

To handle irregular wireless propagation, each wireleskens associated
with two separate radiiiz andr (R > r), whereR denotes the maximum transmis-
sion range the node can reach, andenotes the minimum transmission range the
node can reach [35]R # r arises when the signal propagation is not the same in
all directions. When nodéecan hear nodg, we obtain a constraintl;; < R;. This
is apositive constraint When node cannot hear nodg, we obtain a constraint:

d;; > r;. This is anegative constraint

Next we introduce some more notations. L&t;, denote a location con-
straint for nodej using node as a reference point. LétOS() denote a positive
constraint, andv £G() denote a negative constraint. LgtandsS; be the estimated

region of node andj, respectively.
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If node j can hear nodeé, we obtain a positive constraint;; < R. Then

the estimated region of nogecan be expressed as:

whered(p;, p;) is the distance between two pointsandp;. This region is a union
of discs that are centered at each point ins¥devith radiusR. Similarly if node
j cannot hear nodg we derive a negative constraint, and the region of npde

estimated to be

S; = NEG(S;,r) = {p;|3pi € Si, d(pi,p;) > r}.

If there are multiple constraints derived.q, by using multiple reference
points), the final output is the intersection of the regiaosT all these constraints.
Note that while we use connectivity information to extramtdtion constraints, our
approach can easily incorporate other information, suchngge estimation and

layout maps, which will be described in Section 2.5.1.

Computing probability: ~ Next we describe how each nodéerives a probability
distributionP; over its regionS;. To do so, we partition the whole space into (small)
cells, where each cell is a square with a fixed size. A cellésstimallest unit for
which we compute probability. Letbe a cell. P;(s) is the probability that nodée

is in s. Each location constraint gives a probability distribatmver an estimated
region. The final relative probability of each cell is the ¢ueot of the probabilities
derived from all constraints (including both positive aredjative constraints). We

further derive the absolute probability by normalizing thiative probabilities.
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Below we show how to derive a probability distribution fromeolocation
constraint. Since the probability computation using pesiand negative connec-
tivity information is similar, we illustrate the idea by csidering only a positive

connectivity constraint.

First we describe how to compute probabilfy(s) using an anchor node,
a, whose location is known, as a reference point. Using néwonnectivity, we
obtain a distance constraint fromto : asd;, < k x R, wherek is the number of
hops between andi. ThereforesS; is the disc centered atwith radiusk x R. Since
only connectivity information is available, we assume ndslocation is uniformly
distributed inside the circle. Therefore, for a ggll

0 if g is outside the circle,
Pi(g) = :
1/c; otherwise,

wherec; is the number of cells inside the circle. (Note that appiaabf negative
connectivity information will change the above probalitiistribution. For exam-
ple, if a node is 2 hop away from the fact that it is not’'s immediate neighbor
allows us to prune out the area of a circle centeredwth radiusr.) To avoid leav-
ing out the true position, a cell is considered “inside” tirele as long as it overlaps
with the circle. Consequently; = (J(g) is not exactly the region enclosed by the
circle, but the union of all cells considered “inside” thecté. Thereforel /¢, is an
approximation since some cells are partially inside thel€irThe accuracy of such
approximation depends on the cell size. Smaller cell sizégae the approximation

error at the cost of increasing computation and storage cost

Next we describe how to compute probabilRy s) using a non-anchor node
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(whose location is not known in advance) as a reference p&onsider a node
i's neighborj. For a cellu; C S;, the relative magnitude of its probability is
determined by the probability of subregionS$nthat satisfies!(u;, u;) < R. This

results in the following:

(u) = 3. Euicd(ui,uj)SRPi<ui)

’ ’ ZuZCSZPZ<uz)
= 8- > Blw 2.2)

u; Cd(ui,uj )<R

(2.1)

wheref is a normalization factor so th@uj P;(u;) = 1.

Figure 2.1 shows how a node’s estimated location conveffés: the first
iteration, the region is approximately a circle since thosl@ is a neighbor of an
anchor. The probability distribution is uniform over alllse After the second iter-
ation, the estimated region is refined, with the updatedadsidiby distribution and
smaller area, by leveraging the constraints from the arsctiat are 2 hops away.
After the third iteration, the region is reduced furthetttjaligh the amount of re-
duction is less than in the second iteration because therearts from the 3-hop
neighbors have less impact on the region than constraiots the 2-hop neigh-
bors). As it shows, the cell containing the true positionrted as the shaded cell)
and its surrounding cells have significantly higher prolitds than the remaining

region.

2.3.2 Enhancing Efficiency

So far we consider using static grids. In this case, the coatipm cost is

determined by the number of cells. If a node’s location hg hincertainty due
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Probability Distribution

. 20 ~~10
Y Coordinates’ 10 X Coordinates

(a) Snapshot after 1 iteration.

Probability Distribution

Y Coordinates 20 0 X Coordinates

(b) Snapshot after 2 iterations.

© o o o

Probability Distribution

Y Coordinates 20 0 X Coordinates

(c) Snapshot after 3 iterations.

Figure 2.1: Snapshots of a node’s estimated location fofirtstethree iterations.
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to lack of sufficient location constraints, its estimategioe is large, resulting in a
large number of cells and hence high computation and sta@@sgjs. In this section,
we describe two techniques to improve the efficiency of trevallocalization ap-
proach. The first approach reduces the cost by combiningdally (vertically)
contiguous cells into a row (column) segment. The secondoagp dynamically
adapts the cell size so that coarse-grained cells are usenl thvb estimated region

is large and fine-grained cells are used when the estimagezhries small.

Segment-based localization: One way to reduce the complexity is to combine
horizontally (vertically) contiguous cells into a row (cohn) segment. Since com-
putation using row segments is similar as using column saggnim the following
description we focus on using row segments. The width of sagment is fixed,
but the length is variable. A row segment is specified by apetuy, =1, z),
where(z1,y) is the left end andz,, y) is the right end. Each estimated region is
represented as a set of row segments. We want to calculapedhability of each
row segment containing the true position. Now the compjagitietermined by the

number of row segments.

Suppose we obtain nods estimated region and the probability distribution
over the region. We calculate its neighbts estimated region and probability
distribution as follows. The location constraihC; is d;; < R. Hence,S; =
POS(S;, R). Letu; denote a row segment of andu; denote a row segment
of j. The general formula to derive probability is similar tol(R. Since a row

segment may be significantly larger than a cell, treatingjgdasverlap as complete
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overlap may result in high error. Therefore we further cltaithe fraction of a

row segment that satisfies location constraints.

POS(uj,R)

ui

uj

Figure 2.2: Example of Using Segments

Figure 2.2 shows an example, is a row segment ir¥;. POS(u;, R) is
the region expanded from; by R. u; is a row segment irb;. w; is partially in
POS(u;, R). When calculating®;(u;), we need to calculate the portion of that
is insidePOS (u;, R).

Letv; = u; N POS(uj, R). Let A(S) denote regiort’s size. Assuming

uniform distribution within a segment, we have,

Piu;) = v- ) A(Ug - Pi(u), (2.3)

uiCSi A('LL

where~ is a normalization factor.

Probabilistic dynamic mesh-based localization (PDM): Combining consecu-
tive cells in one dimension can significantly reduce comfparteand storage costs.
On the other hand, its accuracy depends on how accuratelif@mardistribution

captures the actual probability distribution over the $ebonbined cells. When the
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actual distribution significantly deviates from a unifornstdbution, localization
accuracy will decrease. To achieve both high accuracy amddst, we propose an

alternative approach that dynamically adjusts the cedl awneeded.

At a high level, we use coarse-grained cells when the estun@ggion is
large, and use fine-grained cells when the estimated regismall. To achieve
this goal, we leverage mesh generation work developed iratea of computer
graphics. We use DistMesh [21,81] because it can efficigygherate high-quality
meshes. DistMesh usesmned distance functiof(z, y) to specify a region. The
absolute value ofl(z, y) is the minimum distance frorfi, ) to the boundary of
the region, where a negative distance means it is insideetfierr and a positive
distance means it is outside the region. It generates mesigg Delaunay trian-
gulation, and optimizes node locations using a force-basambthing procedure as

described in [21, 81]. It also provides a parameter to cotitesizes of triangles.

We apply DistMesh to localize wireless nodes as follows. hEaade rep-
resents its estimated region using a set of triangular.céllsiangular cell is the
smallest unit for which we compute a probability. We conti@ mesh structure
so that each triangle has similar sizes in both dimensiortsilee sizes of triangles
are adaptive according to the size of the region. It is dhtfogward to write dis-
tance functions for distance constraints and angle canstrd&ach node calculates
its region based on the measured distance constraintsn @igembined distance
function from all location constraints, DistMesh can getera set of triangular

meshes to represent the region that satisfies the locatistramts.

Figure 2.3 illustrates two examples of triangular mesh gggtee by Distmesh.
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Figure 2.3(a) shows the mesh cells for a circle. Figure 2.8fbws the mesh cell
that represents the estimated region for the same node agureR2.1, resulting

from subtracting three circles from one circle.

EVAVAYES

SINEAS N
5t AANANNNS
KK

O i
VAVAVAVAVAVAVAVAN
YR I v AVAVAVAVAVAVAY,
\VAV AV
SRORES

-1 0 1

(a) Mesh cells for a circle.

10 20 30
(b) Mesh cells for a node’s location.

Figure 2.3: Triangular mesh generated by Distmesh.

After obtaining its estimated region, a node can derive tiobgbility dis-
tribution over the triangles (inside the region) in a simikay as in static grids.
Suppose we know the region and probability distributionrdhe triangles of a

given node. A neighbor; of nodei has location constraimt; < R, and calculates
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its regionS; as follows. Lett; denote a triangle ir%;, and¢; denote a triangle in
S;. We derive the probability associated withoy first computing the fraction af
satisfying the location constraint, and then weightingfthetion by the probability

of node: residing int;.

Figure 2.4 shows an example of deriving probability disttibn. ¢, is a
triangle inS;. POS(t;, R) is the region expanded from by R. ¢, is a triangle in
S;. t; is partially in POS(t;, R). When calculating?;(t;), we need to determine
what fraction oft; is insidePOS(t;, R).

POS(4,R

Figure 2.4: Example of mesh model.

Lett, =t, N POS(t;, R). Assuming uniform distribution within a triangle,

we have

P =1 3 iRt (2.9

where~ is a normalization factor.
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2.4 Performance Evaluation

We evaluate localization schemes using a methodology ainal[96] and
[95]. We uniformly place a set of nodes over a 2-dimensiopats. We compare
different localization schemes while varying the numbenoéles (V), the maxi-
mum transmission rangézj, and the fraction of anchor nodeg)( In this section,
our evaluation uses one power level. In section 2.5.3.1, Wdwther study the

effect of power control by varying the number of power levels

We quantify the localization error using the same methocthd85%]. For
both Sextant and our approach, we use Monte Carlo samplsagple 1000 points
in a node’s estimated region, and pick the one that minintizesverage error to
other sampled points inside the region. The localizatioaras then calculated as

the distance from this point to the node’s true position.

However, there is a difference in choosing sample pointeden Sextant
and our approach. Sextant uniformly samples points insidgian, whereas in our
approach the number of sample points in a cell is proportitmés probability.
As we will show, the probabilistic-based approach can $igantly improve the

localization accuracy.

Effects of the number of nodes Figure 2.5 shows the cumulative distribution of
position errors forN = 50, R = 12.5, and A = 10%. The size of the space is
50x50.

We make the following observations. First, PDM significamtlit-performs

Sextant. For example, the percentage of nodes achievis@s = R = 3.75 errors
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N=50,R=125,A=10%,PL=1
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Figure 2.5: Probability distribution improves localizatiaccuracy (50 nodes)

in dynamic mesh i$0% compared t®36% in Sextant. This is because in Sextant
different points inside a region are treated equally, wagreDM leverages the
derived probability distribution over the region. Secoad,we would expect, the
static grid approach using 0.5x0.5 grids yields smallesrsrthan using 2x2 grids.
Third, the dynamic mesh approach performs better than tite gjrid approach
with 2x2 grids at the lower end of the errors (0%, 20%, 30% * R errors). Fourth,
combining cells into segments with width 0.5 (denoted agytSent (width=0.5)"

in the figure) yields slightly larger errors than using statiids or dynamic meshes,

but still out-performs Sextant by a significant amount.

Table 2.1 summarizes average running time of differentrélyos. As we
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Sextant| Grid-2 | Grid-0.5| PDM | Segment
1.98 1.225 | 56.67 6.82 | 3.66

Table 2.1: Average running time in seconds using a 1200 MHBmBPARC-II1+
processor with 16GB memory.

can see, the running time of static grid approach decreasegwreasing grid size.
When the grid size is as large as 2x2, the static grid apprtz@s less time than
Sextant. In all other three schemes, the running time isdotigan Sextant. (Note
that Sextant code is from its original authors and it is impdated in JAVA, while
all of our approaches are implemented in MATLAB. We expeet ithnning time
of our approaches can be significantly improved by convgitie MATLAB code
into C or JAVA.)

For the rest of evaluation, we choose PDM as a representdtou proba-

bilistic approaches.

Figure 2.6 shows the performance for networks with 100 nodaspace of
size 70x70. Similar to networks with 50 nodes, PDM achievgkdr accuracy than
Sextant. For example, the percentage of nodes achievis@yo « R = 3.75 errors
is 40% in Sextant, and i§7% in PDM. On average, Sextant takes 2.14 seconds per

node to compute, and PDM takes 10.23 seconds per node to tempu

Effects of transmission range Transmission rang& determines network den-
sity. More neighbors mean more location constraints, whgthally result in higher
localization accuracy. We varg to obtain different network densities shown in Ta-

ble 2.2. For simplicity, we assume the wireless propagasoagular (.e. R = r)
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N=100,R=125,A=10%,P=1
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Figure 2.6: Probability distribution improves localizatiaccuracy (100 nodes)

in our simulation. It is not difficult to generalize 1® # r cases.

N | Spacel R=10| R=125| R=15
50 | 50x50| 6.0612 | 8.9592 | 11.28
100 | 70x70| 6.0562 | 8.58 11.28

Table 2.2: Average node degrees under different transomsanges.

As described in [50], 6 is a “magic” average node degree foriral@ss
network to be connected. So we choose the shortest rangelt® banich gives an

average node degree of 6.

Figure 2.7 shows the results for different transmissiomgeanwhile fixing
A = 10%. The accuracy results of 50-node (not shown) is similar. ilg@dDM

consistently outperforms Sextant. As we would expect, toeiacy is higher when
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Figure 2.7: Effects of Transmission Range (100 nodes)

the transmission range is larger, which results in highervoek density. Since the
transmission range is determined by transmission powexe ik a tradeoff between

energy-efficiency and localization accuracy.

Effects of the fraction of anchor nodes Next, we study how the fraction of an-
chor nodes A, affects localization accuracy. In our evaluatidn,= 12.5. Fig-
ure 2.8 shows the localization accuracy of 100-node netsvaskve vary the anchor
fraction from 5% to 20%. The results of 50-node networks arelar. As before,
PDM vyields lower error than Sextant. In addition, we find tteg anchor fraction

significantly affects localization accuracy. The more amciodes, the higher local-
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ization accuracy. This is consistent with our expectatimtause 1-hop neighbors
of anchor nodes can be localized more accurately than nodégpla hops away
from anchor nodes due to smaller uncertainty. As shown iar€ig.8, the increase
in localization accuracy is significant as the anchor fracincreases from 5% to
10%. A further increase in the anchor fraction leads to mooelerate increase
in the accuracy. Therefore we u$e% as the anchor fraction for the remaining

evaluation.

0.9

0.7

0.5
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Cumulative Distribution of Nodes with Error<=x

0.1f
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0 2 4 6 8 10 12 14

Position Error (x)

Figure 2.8: Effects of anchor nodes fraction (100 nodes)

Summary In this section, we compare different localization algums. Our re-

sults show that probabilistic region-based localizationesnes using static grids,
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dynamic meshes, and segments of grids, achieve higherzatiah accuracy than
Sextant. In addition, PDM provides a reasonable balancsdest accuracy and

computation cost.

2.5 Two Extensions

In this section, we extend our approach in two directionsstFto further
improve the localization performance, we propose to ekaad take advantage of
additional information by (i) using power control, (ii) ugj carrier-sense range as
another reference distance besides communication ranpmgorporating physi-
cal layout, and (iv) exploiting more powerful anchor nodBlse additional informa-
tion is useful to many localization algorithms includingreuSecond, we enhance
the robustness of our approach against erroneous measurbyntlerating cer-
tain degree of inconsistency among location constraintsallly, we evaluate the

effectiveness of these extensions.

2.5.1 Extract and Leverage Additional Information

The accuracy of a localization system highly depends onitih@uat of in-
formation available. We propose several ways to obtaintewahdil information.
They can be used separately or jointly, and can be appliedfévaht localization
algorithms. Note that while this is not the first approach tees additional in-
formation besides network connectivity to infer locatisayeral of the techniques
presented here are novel. In addition, we evaluate and aentipa effects of the

additional information.
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Using power control: Power control enables wireless nodes to obtain ad-
ditional information in the following way. Suppose each godevelp, has cor-
responding maximum and minimum transmission raRgg,) andr(p,). By ad-
justing the transmission power, if a nodléinds out that it can communicate with
another nodg at power levep,, but cannot communicate at power lewgl |, the
distance betweehand;j should be betweef(p,) andr(p,—1). This additional
information makes range estimation more accurate, and e&asily incorporated
into any localization algorithm. As we would expect, a larggmber of power
levels provides more information and improves localizatg@curacy. Power con-
trol is an interesting and practical way for obtaining audial information since
power control is readily available in commercial wireleasds. In addition, it only
requires nodes to obtain network connectivity informatiand does not require

signal strength measurements or additional hardware.

Using carrier-sense range:Many existing localization algorithms rely on
network connectivity information for location estimatiorhis gives us information
as to whether a node is within or outside the communicatingeaf another node.
However we do not have further information about the nodes dhe outside the

communication range.

We make an interesting observation: in addition to commatioa range,
carrier-sense range can also be used as a reference forcgiststimation. For ex-
ample, if two nodes cannot sense each other’s carrier, tteegudaside each other’s
carrier-sense range. This type of information is not atélaf we only use net-

work connectivity, since the carrier-sense range is tylyidarger than the commu-

48

www.manaraa.com



nication range. LeR and R..,.., denote communication range and carrier-sense
range, respectively. If two nodes are outside communicatmge but can sense
each other’s carrier, their distance should be within tmgegaR, R .. ric-]; If tWo

nodes cannot sense each other’s carrier, their distanagger lthanR.., e,

To determine whether two nodes can sense each other'srceugiean mea-
sure whether these nodes can simultaneously broadcaddif2g specifically, we
measure the broadcast rate from the two senders when thegtire simultane-
ously, and denote it &5,,4.:,.-. We also measure the broadcast rate when the two
senders are active separately, and denote Tt as, 4. If % is close to 1, it

means that the two nodes do not sense each other’s carhiernase they do.

As with power control, we extract more precise distancermgtion using

the carrier-sense range, and it can be applied to diffeoealization schemes.

Using physical layout: In some applications, we may have a rough idea of
physical layout of wireless nodes. For example, in residentesh networks [89],
we know that wireless nodes are deployed at different houses we also have
a neighborhood layout map. The map provides additionakinébdion for us to
narrow down the location. Since a node can only be locatedeabbthe houses, its
final estimated location should be the intersection of itsreged region (without

considering the physical layout) and the regions occupyeith® houses.

Using more powerful anchor nodes:As the previous work shows, angle
information is valuable for location estimation. Howewastaining angle informa-

tion often requires more expensive hardwarg/( directional antennas or additional
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transmitters like ultrasound). In order to achieve bothntagcuracy and low cost, a
promising approach is to use a combination of more poweddées and less power-
ful nodes. For example, only the anchor nodes are equippidoaiverful devices
for more detailed measurement, whereas the remaining nsgesheap devices as
usual. An interesting question is how much benefit such piovanchor nodes of-
fer. In this chapter, we study the following type of powerémichor nodes: anchor
nodes that are equipped with directional antennas for miegsangle information
towards its immediate neighbors. We evaluate localizadmpuracy as we vary the

fraction of anchor nodes.

2.5.2 Enhance Robustness

A node estimates its location by finding regions that saas$gt of location
constraints. Location constraints are usually obtainednegsuring distances or
angles between nodes. However, such measurements caothecers, and in some
cases even lead toconsistentocation constraints. A set of location constraints are

inconsistentf there is no point that can satisfy all these constraints.

We propose a technique on top of our probabilistic regiosedaapproach
to achieve robustness against inconsistent location i@nts. \We leverage the fact
that majority of location measurements are consistent;cenyl a few constraints
may contain significant errors and result in inconsistenidyerefore a mesh cell
belongs to a node’s estimated region as long as it satisfiss oithe constraints.
In our evaluation, we use 80% as a threshald.,(a mesh cell is considered to

belong to a node’s estimated region if it satisfies at lea% 80the constraints for
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that node). As part of our future work, we plan to choose thesthold adaptively.

Our robust localization proceeds in the following thregsteFirst, as be-
fore, every node propagates location constraints to alesadthin 3 hops away
(i.,e. TTL=3). Second, each nodecalculates its own region based on the location
constraints from other nodes. Location constraints frono@en determine a re-
gion S;; for . Unlike in Section 2.3; does not calculate its region &s = N,.5;;.
Instead,S; is calculated as the set of mesh cellsuch that:; satisfies at least 80%
of the constraints. Finally, each node calculates the fmtityadistribution over all
mesh cells within its estimated region. This step is sintitewhat we describe in

Section 2.3.

2.5.3 Performance Evaluation of Extensions

In this section, we evaluate the performance benefits otiaddi informa-

tion and robustness enhancement.

2.5.3.1 Evaluation of Leveraging Additional Information

In this section, we study the effects of leveraging addalanformation.
First, we examine the effect of power control by varying thener of power levels
PL that a node can use for its transmission. Table 2.3 lists#msnission power
at different levels, wher@ is the maximum transmission power. Note tidt = 5
corresponds to or approximates several commercial wsetasds €.g, Netgear
WAG511 and Cisco Aironet 350 series). Next we examine theceidf carrier-

sense range-based constraints by vanyiyg..... = 1.5R,2R,2.5R, 3R, where
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R is communication range. Table 2.4 summarizes the notat®mse. Then we
evaluate the performance benefit from incorporating a gayikyout map. Finally,
we examine the effect of using powerful anchors that havéeangprmation. We
consider three levels of angle measurement errors: largesewithin [—20, 20]
degrees, medium errors withjr-10, 10] degrees and small errors withjr5, 5]

degrees. These values are consistent with commerciatidinetantennas.

PL | Fraction of maximum transmission power
1 100%

2 25%,100%

3 6.25%,25%,100%

5 6.25%,12.5%,25%,50%,100%

10 | 6.25%,10%,12.5%,20%,25%,35%,50%,65
80%,100%

(=}

%,

Table 2.3: Transmission power for different power levels

the number of nodes
transmission range
the fraction of anchor nodes
PL the number of power levels
Reurrier | Carrier-sense range

b | =

Table 2.4: Notation used in performance evaluation.

Effects of power control When only connectivity information is available, the
distance measurement is binary—eithe< R or d > R. By adjusting the trans-
mission power level, a node can extract more accurate distaonstraints in the
above form. As shown in Figure 2.9, the accuracy improvef @it increasing

number of power levels. For example, 20% nodes achieveigostror within
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10% *= R = 1.25 when 1 power level is used. In comparison, 32%, 35%, 50%,
and 65% nodes achieve similar errors when the number of plewels is 2, 3, 5,
and 10, respectively. This demonstrates that power coistedfective in improving

localization accuracy.
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Figure 2.9: Effects of power control (100 nodes).

Effects of carrier sense constraint Besides power control, carrier-sense range
can also help to extract more accurate distance constraisthown in Figure 2.10,
compared with the base case without carrier sense infosmatonstraints derived
using carrier-sense ranges improve localization accurgeyconsiderable amount.

As the carrier-sense range increases, the negative cotstiee., d > R rier)
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become tighter, and the positive constraints.,(d < R...i.-) become looser. In-
terestingly,R....ir = 2 * R yields the highest accuracy among all the carrier-sense
ranges considered. This suggests that the positive antiveeganstraints extracted

using2 x R are especially effective under the scenarios we consider.

N=100,R=125 A=10%,PL=1

0.9

0.8

0.6

0.5r

0.4r

0.3

—6— CSR =1.5*R
0.2 S —*— CSR = 2*R
—&— CSR = 2.5*R
0.1 —<4— CSR =3*R
—=4— No CS Info

O 1 1 1 1 1 1
0 2 4 6 8 10 12 14

Position Error (x)

Cumulative Distribution of Nodes with Error<=x

Figure 2.10: Effects of carrier sense constraints (100 siode

Effects of map constraint Next we study the performance gain from a layout
map. In our evaluation, we obtain a real neighborhood mapctwtontains the
coordinates of houses. We select 56 houses from the map dvGm x 700m
space. Since there is no house size information, we genbéeategions occupied

by the houses as follows. Each house is a square and has thesganA house is
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centered at its coordinate, and its sizeijze, is determined based on the minimum
distance between any pair of housés;,. In the localization process, each node
derives its region and probability distribution based om ¢bnstraints imposed by
the map i.e., a node can only be inside a house), as well as the locaticstreants
from other nodes. We use transmission range of 150 metershgives an average

node degree of 6.39.

N =56, R = 150(meters), A = 10%, PL = 1
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Figure 2.11: Effects of a physical layout.

As shown in Figure 2.11, a layout map significantly improvasalization
accuracy. In addition, the smaller house size, the higleaditration accuracy. This
is what we would expect. Because a node can only reside in sehthe location

constraints imposed by the map is tighter for smaller haudks/ertheless, even
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whenhsize = d,,;,, lOcalization accuracy is still significantly higher thaithout

the layout map.

Effects of powerful anchors Finally, we examine how anchor nodes with an-
gle measurement affect the accuracy of localization. Wetlhuse levels of angle
measurement error$:-20, 20] degrees|—10, 10] degrees anf@i-5, 5] degrees. An
estimated angle is then the true angle plus noise unifornslyilbuted within the

error intervals. Figures 2.12 summarizes the results.
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Figure 2.12: Effects of angle information (100 nodes).

We make the following observations. First, angle informathelps to

decrease the localization error significantly. Secondnevken the angle mea-
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surement contains errors pf20, 20| degrees, localization accuracy is still signif-
icantly higher than the accuracy achieved without anglermftion. Compared
with [—5, 5] degrees of angle measurement error, its accuracy is slitgiviler at

the low end of position errors, and comparable for the remgiposition errors.

Summary In this section, we study the effect of additional inforroatiincluding
using power control, carrier-sense range-based constrariayout map, and an-
gle measurements from anchor nodes. Our results demansiedtthe additional

information is effective in significantly improving locahtion accuracy.

2.5.3.2 Evaluation of Robustness Enhancement

In this section, we evaluate the robustness of our extera=dization al-
gorithms. First we consider the case where the transmigsioge information
Is inaccurate. More specifically, each node’s true comnatiun range R) is
R = Res; + Rerror, WhereR,.,.,.. iS @ positive or negative range estimation error,
andR,; is the communication range that we have estimaigd.,,. arises from the
difference in transceivers’ properties and environmegifalcts. While one may try
to reduceR.,..., by individually calibrating each node (g, obtaining conservative
minimum and maximum communication ranges), such calitanas costly. More-
over even with calibration, errors cannot be completeinelated due to changing

environmental effects.

As shown in Figure 2.13, with robustness enhancement, ttedization

algorithm maintains high accuracy when the communicatémges contain up to
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Figure 2.13: Effects of inaccurate communication rangyje € 50, R = 12.5,
A =10%, PL = 1).

20% * R errors. The accuracy is lower whé,...,. increases up t¢0% = R, but still
all nodes can be localized, with around 60% nodes achievitignR /2 = 6.25

position error.

Next we consider errors arising from malicious nodes. Inealuation,
we randomly select a few nodes as malicious nodes. Such apretends to be
at a randomly generated location. It calculates a regionafcée centered at the
false location with radiugz, and then transmits this region as a false constraint to
its neighbors. Figure 2.14 shows the effects of malicioudeso There are two

sets of curves, corresponding to the results of positiarewithin R /2 and within
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R. “Grid-2” and “Robust Grid-2” curves represent the resirtsn using fixed 2x2

rectangular cells with and without the additional robustnenhancement, respec-
tively. After introducing such malicious nodes, not all msatan be localized due to
potentially inconsistent constraints. For the nodes thaélhnconsistent constraints

and cannot be localized, their localization error is coesad larger thark.
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Figure 2.14: Effects of malicious node¥ (= 50, R = 12.5, A = 10%, PL = 1).

As Figure 2.14 shows, even when the fraction of maliciousesad only
10%, the percentage of nodes with position errorg/2 = 6.25 drops as much as
30% under both Sextant and Grid-2. In comparison, with tltktechal robustness
enhancement, the accuracy reduction under the “RobustZzrgsmall especially

when the fraction of malicious nodes is within 10% (only 108duction). More-
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over, even when 30% nodes are malicious, majority of nodestithbe localized
within errors of R under “Robust Grid-2”. This demonstrates the effectiveras

our robustness enhancement.

Summary Our evaluation results show that the robustness enhanc¢eésredfec-
tive. The enhancement helps maintain high localizatiomamy even when there

are20% * R range errors ot0% malicious nodes.
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Chapter 3

A General Model of Wireless Interference

3.1 Overview

Interference is fundamental to wireless networks. Due ¢éddtoadcast na-
ture of the medium, transmissions from one sender intevigrethe transmission
and reception capabilities of other nodes. Understandidgreanaging interference
is essential to the performance of wireless networks. Fstairce, it can directly
benefit channel assignment [70, 90], transmit power cofdd| routing [18, 22],

transport protocols [64], and network diagnosis [15].

Unfortunately, the state of art in estimating the impactragiference is
rather primitive. Much of the existing work is based on siey@bstract models of
radio propagationg.g, the interference range is twice the communication range).
While such models may predict the asymptotic behavior, taybe highly inac-

curate in any given network [2,53].

This has prompted researchers to devise models that aredsesthg mea-
surements from the underlying network [2,88]. These measants are usually
collected in a simple configuration, such as each node sgtuintself. They are
then used to predict the impact of interference in more cempbnfigurations such

as multiple transmitting nodes. This is a promising di@ttibecause it makes no
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assumptions about the nature of radio propagation whichphagen difficult to

model in real environments.

However, the existing measurement-based models are quited. They
do not apply to configurations that have more than two seratetso flows, have
unicast traffic, or have senders with finite demands. The waly today to pre-
dict network behavior under these general configuratiots &ctually measure it.

(Indeed, most experimental research today is forced totamethodology.)

But measurement alone is insufficient because it lacks gireelipower and
scalability. While it can accurately predict the perforroarf the measured con-
figuration, it cannot predict performance for other confegions. To optimize net-
work performance, one often needs to predict the performahmany alternative
configurations. Since measuring all possible configuratisnnot feasible, it is
necessary to develop a model to estimate network perforenamaer arbitrary con-

figurations (e.g., to perform what-if analysis).

In this chapter, we develop a general model of interferem&etierogeneous
multihop wireless networks with asymmetric link qualitydamon-binary interfer-
ence relationships. Our model takes as input traffic demaddreceived signal
strength (RSS) between pairs of nodes, which requires ©fly) measurements
in an N-node network. It then estimates the rate at which each sevillléransmit

and the rate at which each receiver will successfully recpackets.
Compared to existing measurement-based models [2, 88]duanae the

state of art in three important ways. First, we go beyond #se ®f two senders
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(or flows) to an arbitrary number of senders. This is challegglue to complex
interactions among nodes. For instance, the sending ratedek depends on those
of all other nodes, which in turn depend on the sending ratetself. Second, we
go beyond the case of broadcast transmissions. Unicashtiasions, which have
both a data packet and an ACK, are more common in wirelesneswThey intro-
duces additional complexities that stem from retransmnssiexponential backoff,
possibly asymmetric link qualities, and collisions notyoamong data packets but
also due to ACK packets. Third, we go beyond the case of iefingffic demands
and model the more realistic case of finite demands. Mostetalorks have het-

erogeneous nodes with varying traffic demands.

Our model consists of three major components:

1. An N-node Markov model for capturing interactions among abiteary
number of sendersThis is based on a-persistent CSMA approximation
to the 802.11 distributed coordination function (DCF).Xtends the previ-
ous models€.g, [8]) to multihop wireless networks, non-saturated densand

and asymmetric link quality.

2. A receiver model of packet-level loss ratds.particular, we find that slot-
level and packet-level losses can be quite different depgrah how losses
are generated. Hidden terminals can significantly incrédaseacket-level
loss rates well beyond the slot-level loss rates by spreatiia lossy time
slots across many packets. Based on this observation, odelrcaptures

both synchronized and unsynchronized packet-level cafli®sses.
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3. Unicast sender and receiver modeWe further extend the above broadcast
sender and receiver models to capture interactions amaoisgatriransmis-
sions. We develop two major extensions for this purpose.fifsteextension
models the retransmission and exponential backoff at thdeseside, and
the second extension models data/data, data/ACK, and ACK/éollision

losses at the receiver side.

We evaluate our model using simulation as well as measursnogar two
wireless testbeds. Our results show that the model givagaecprediction over a
wide range of scenarios with both broadcast and unicadctrafith both saturated
and unsaturated demands, and across different number @érsenin simulation,
where accurate RF profile is available, our model’s root nsepare error (RMSE)
is less than 5% for both throughput and goodput predictibnthe testbeds, where
RF profile is empirically measured and subject to measurénwse and bias due
to lost packets, our model's RMSE is less than 12%. While oadehis more
general, we find that its accuracy is higher than the statrtohodel that considers

the special case of two broadcast senders with infinite ddef@3].

3.2 Related Work

Considerable research has been done in the area of modeteigss net-
works. We broadly classify the existing work into three gatges: (i) modeling
single cell WLANSs, (ii) general link throughput modelingjj)(end-to-end through-

put modeling.
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Modeling single cell WLANs: The first category analyzes the performance of
IEEE 802.11 Distributed Coordinated Function (DCF) [8, &8]nodes all within

communication range.

In [8], Bianchiet al. present an extremely simple Markov-chain model for
performance analysis of DCF scheme. The model assumesctikeahel condition
and finite number of hosts. It analyzes saturation througbjthe system. The key
approximation is that, at each transmission attempt, gaaiésion occurs with
constant and independent probability. Under this indepeoe assumption, the
model captures the bidimensional process of backoff tinnatar and backoff stage
with a discrete-time Markov chain. Solving the Markov chgives the stationary
probability that a node transmits in a generic slot. Theesysthroughput is then

expressed as a function of this stationary probability.

In [58], Kumaret al. consider single cell WLANs where only one transmis-
sion is possible at any time. Their analysis begins with alamkey approxima-
tion as in [8], which leads to a fixed-point equation. Theyreate the saturation

throughput by solving the fixed-point problem.

While these models can estimate throughput under arbitrargbers of
senders, they assume packet transmissions to be synauloaizl there are no
partially overlapping transmissions. They do not apply t8Ms or multi-cell
WLANS, where not all nodes can hear each other and partialtylapping trans-
missions are common. Moreover, they assume binary interéer, which is not

true in real wireless environments.
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General link throughput modeling: The second category of work targets gen-
eral topologies of MWNSs or multi-cell WLANs where not all neglare within
communication ranges of each other. Because of the chakgmgsented by such

topologies, existing models only handle restricted traffienarios.

Garettoet al. develop a two-flow model [31]. They focus on embedded
subgraphs in an MWN, each of which consisting of four nodestai flows. De-
pending on how the four nodes are connected with each othemr tare totally
twelve possible topologies. They develop models to prezich flow’s short- and
long-term performance for cases where senders do not hefao#zer, particularly
an analytical model to characterize the long-term unfasréat arises in Asym-
metric Incomplete State when 802.11 CSMA is used as the MAs@opol, and
a model to capture the long-term fairness but short-termitmgss in Symmetric

Incomplete State.

The work in [88] is closest to ours. Regs al. develop a model to predict
delivery rate and throughput under two competing broadsasters. They first ob-
tain an RF profile of anV-node network withO (V) measurements, in which each
node broadcasts in turn while other nodes record RSSI frensémder. The RF
profile contains a mapping between delivery rate and RSSddoh receiver. Based
on this profile, their model predicts active probabilitidseach sender when two
senders compete for the medium, and delivery rate at eaelveeavhen both are
active simultaneously. Their model is based on measurenfierh real network,

therefore is more accurate than analytical models basenhgplistic assumptions.

Our work falls into this category and advances the statarbBy going
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beyond pairwise interference and modeling interferenceranan arbitrary number

of senders for both broadcast and unicast, both saturatedresaturated demands.

In [46], Kashyapet al. independently present another measurement-based
approach to modeling transmission capacity and link thinpugy in 802.11 net-
works. Their basic model supports arbitrary number of bagiéd broadcast senders.
This can be extended to support non-backlogged interfaretsinicast. They eval-
uate and verify the cases of arbitrary number of backloggeddztast interferers
and single non-backlogged broadcast interferer. Sinol8] and our work, they
develop a MAC-layer model that is fed by a PHY-layer model.e RHY-layer
model takes RSS measurements as profiling input and modelsaleand packet
capture. The sender-side of their MAC model is a discrete filarkov chain sim-
ilar to that in [8]. They also assume a constant deferral abdity in their model
as in [8]. The receiver-side of their model considers botkelrior rate (BER) and
SINR when estimating delivery rate. There are at least twjpnuhfferences be-
tween their model and ours. First, their model requires @angtindependence as-
sumption, which does not hold in general. For example, timeidel assumes that
two nodes carrier-sensing each other never transmit samextusly, but in practice
the collision probability is around 12% due to both nodesosilng same backoff
timer. Our model can capture this nonnegligible event. 8dctneir model is based
on non-linear constraints, hence is expensive to solvey Tbke either simulation
which results in long running time or further approximatwhich leads to addi-
tional errors. In comparison, our model is based on lineastaints and can be

solved analytically and efficiently without compromisingcaracy.
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End-to-end throughput modeling: The third category estimates the end-to-end
throughput in multihop wireless networks [30, 37, 43, 59Jnc® modeling end-
to-end throughput is more difficult than one-hop throughputbe tractable, such
models only apply to specific scenarios. In particular, teilyer consider asymp-
totic behavior of wireless networks [37], or assume optistileduling [43, 59], or

are limited to single flow scenarios [30].

In [37], Guptaet al. consider asymptotic behavior of wireless networks,
in particular, the throughput capacity of networks. Throwgalytical modeling,
they derive lower bounds on throughput capacity for bothti@ty and random

networks.

In [43], Jainet al. investigate the impact of interference. They model
the interference with a conflict graph and derive upper ameetdoounds of op-
timal throughput for any given network and demand. The madslmes optimal
scheduling by an omnipotent central entity, therefore vegia best case bound.
A similar problem is studied in [59], with the goal of desiggiprovably good al-
gorithms for arbitrary instances. The authors developydical models and dis-
tributed algorithms for joint routing and scheduling to i@sfe close to optimal

throughput capacity.

Gaoet al. present another model in [30] to compute end-to-end thrpuggh
capacity of a given flow. They first map an ad hoc wireless ngkwiio a contention
graph to represent interference relationships. Then ummgnalytical model of
802.11 DCEF, they derive channel idle and collision probaéd, and furthermore

the final end-to-end throughput capacity.
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While our work currently models link throughput, we beligtzean be gen-
eralized to model end-to-end throughput in real networkeuting information is

given. We will investigate this in the future.

3.3 Background on 802.11

The IEEE 802.11 standard [74] specifies two types of coot@indunc-
tions for stations to access the wireless medium: diseibebordination function
(DCF) and point coordination function (PCF). In this chaptee focus on DCF,
which is much more widely used than PCF. DCF is based on CSMARefore
transmission, a station first checks to see if the mediumasdadble by using vir-
tual carrier-sensing and physical carrier-sensing. Theiuneis considered busy if
either carrier-sensing indicates so. Virtual carriersseg considers medium is idle
if the Network Allocation Vector (NAV) is zero, otherwiseabnsiders the medium
to be busy. Only when NAV is zero, physical carrier-sensgpgerformed. A sta-
tion determines the channel to be idle when the total enexggived at a node is
less than the CCA (clear-channel assessment) threshdiisloase, a station may
begin transmission using the following rule. If the mediuas been idle for longer
than a distributed inter-frame spacing time (DIFS) pertoainsmission can begin
immediately. Otherwise, a station that has data to sendifaiss for DIFS and then
waits for a random backoff interval uniformly chosen betwée CW,,;,], where
CW,nin 1S the minimum contention window. If at anytime during theipd above
the medium is sensed busy, the station freezes its countethencountdown re-

sumes when the medium becomes idle for DIFS. When the codateements to
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zero, the node transmits the packet. In the case of uni¢dke receiver success-
fully receives the packet, it waits for a short inter-franpaaing time (SIFS) and
then transmits an ACK frame. If the sender does not rece&Cif it doubles its

contention window to reduce its access rate. When the cootewindow reaches
its maximum value, it stays at that value until a transmissocceeds, in which

case the contention window is reset®®V,,,;,,.

3.4 Brief Description of Our Model

Our model takes traffic demands and RF profile as input andutsithe
estimated sending and receiving rates for each node. Suokel e a powerful tool
for performing what-if analysis and facilitating networgtonization and diagnosis.
More specifically, consider a network witki nodes. The inputs to the model are:
i) traffic demand from each sendeto each receiver, andii) RF profile, which
refers to the received signal strength (RSS) between earypnodes, denoted
asR,.. The outputs are the normalized throughput and goodpubtddrbyt,,. and
Jsr, respectively.t,, is the rate at whicly sends traffic to- andg,, is the rate at
which r receives successfully. Both. andg,, are normalized by the MAC-layer

data rate.

In this dissertation, we focus on one-hop traffic demands;hvimeans that
traffic is only sent over one hop and not routed furtherr fannot hear frons,
its receiving rate is zero. Modeling network performancdamone-hop traffic de-
mands is an important and necessary step towards estinesitiitp-end throughput

over multihop paths, which we plan to investigate in the feitu
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Our model operates as follow. First, we measure the RF praffilee net-
work by letting each sender broadcast in turn and having ther modes measure
received RSSI values and loss rates. From these measussmentecover pair-
wise RSS [z,,.) and background interferenc®,() due to sources other than nodes
in the modeled network (Section 3.7). While we use custofffidrimr our experi-
ments, it may be feasible to perform these measurementg nemmal application

traffic.

Then, we apply ousender modetio estimate the amount of traffic sent by
each sender under the given demand andexeiver modelo estimate the amount
of traffic successfully received. Our key contributionsitighe generality and ac-
curacy of the sender and receiver models. They apply to bottdoast and unicast
transmissions for an arbitrary number of senders, with aititbwt saturated traffic
demands. For saturated broadcast demands, our model taateshroughput and
goodput by computing the stationary probabilities of a Marknodel. For unicast
demands or unsaturated broadcast demands, the transigiwix of the Markov
model involves additional variables and its stationarybpiulities cannot be di-
rectly solved. Therefore we use an iterative framework,rehee first initialize the
variables in the transition matrix and then compute statipiprobabilities, which
are then used to update the transition matrix. Our resutis/ghat the iteration
framework is effective and converges quickly (within 1Qratiions in our evalua-

tion).

We assume the following radio behavior. A transmittedetermines the

channel is “clear” when the total energy it receives is betlosdCCA (clear-channel
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assessment) threshold,. A receiverr correctly decodes a transmission from a
sender when;) its signal strength is at least radio sensitivity, andii) the signal
to interference-plus-noise ratio (SINR) is at least theFStNresholdy,. We denote
the thermal noise experienced byas W,. The values of3,, ., ¢, andW, are

constant but radio-dependent.

The key notation used in this chapter is summarized in Talile\Be explain

each term when it is first encountered.

Model inputs: measured

R, RSS from node to »
B, Background interference at
dgy Traffic demand froms to
Model inputs: radio-dependant constants

O CCA threshold ofs
Vr Radio sensitivity of-
Oy SINR threshold of
W, Thermal noise of

Model outputs
tsr Normalized throughput: rate of traffic sent byo r
Jsr Normalized goodput: rate of traffic received bjrom s
L, Packet loss rate fromto r

Other variables
S; Subset of nodes that are transmitting in state
T Probability that the network is in state
M Matrix of transition probabilities among states
C(s|S;) Probability that channel is clear ain statei
Q(s) Probability fors to have data to send with backoff counter = 0
OH(s) Average overhead from DIFS, SIFS, and ACK at sender
CW (s) Average congestion window of
T,.(s)  Average packet transmission time for

Table 3.1: A summary of key notation.
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3.5 Broadcast Traffic

In this section, we present our model for broadcast traffigtesions to

handle unicast traffic are presented in the next section.

3.5.1 Sender Model

The goal of the broadcast sender model is to estimate how paathsender
can transmit given traffic demand. The classic Bianchi m{&]eind its extensions
(e.g, [69]) model the behavior of 802.11 DCF by constructing adite Markov
chain. To make the model tractable, all packet transmisséwa assumed to be
synchronizedi.e., there will be no partially overlapping transmissions. lgemeral
multihop wireless network, however, partially overlagpittansmissions can be
common because not all nodes can carrier sense each othes, thiese models

cannot be directly applied.

We develop a generaV-node sender model based on Markov chains. We
present it incrementally. First, we present the model foralde packet sizes and
saturated traffic demands. Then, we extend it to handle fise#lgt sizes and un-
saturated demands in Sections 3.5.1.1 and 3.5.1.2. Finadlgescribe techniques

to enhance the scalability of the model in Section 3.5.1.3.

At a high level, we construct a Markov chain where each stadpresents
a set of nodes (denoted BY) that are transmitting in a time slot. Givéhsenders,
the Markov chain hag" possible states (which we prune in Section 3.5.1.3). We
derive the transition matriX/ for the Markov chain based on 802.11 DCF and use

it to compute the stationary probability of each state. The throughput of node
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is then simplyt,, = Z“nesi .

Deriving the transition matrix M : In this section, we assume that nodes send
variable-length packets with exponential distributiorl dhat the state transitions
of different nodes are independent. (We relax these assomsph Section 3.5.1.1.)
Because of independence, we can focus on computing thetimansrobabilities
of an individual node, say. This involves computing four transition probabilities
for every state: i) staying in idle mode[y,(n|S;); ii) entering transmission mode,
Po1(nl]S;); i) exiting transmission mode?;y(n]S;); andiv) staying in transmis-
sion mode,P;;(n|S;). The probabilityM (i, j) of the network transitioning from
statei to j is:

M (i, j) =11, c5:n5;Poo(n] ) %

IL, c5ins, o1 (n]Si) %

I, 5,5, Pro(n]Si) %
Hnes,ns, Pii(n|S;), (3.1)

whereS; denotes the complement of st

We compute the four per-node probabilities based on 802QH. B node
can begin transmission when all the following three condgihold::) its random

backoff counter reaches @;) the medium is clear; andi) the node has data to
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send. Thus:

Po1(n]S;) = Primedium is clear N counter = 0 A n has data]
= Pr[medium is clear] x Prlcounter = 0|medium is clear]

X Pr[n has data|medium is clear N\ counter = 0]
1

= W 1 OHw x C(n]S;) x Q(n), (3.2)

where OH (n) (for overhead) denotes the additional clear time slots sghabde
needs to wait in addition t6'1/ (n), the average congestion window. For broadcast,
OH (n) is the DIFS duration in unit of time slotg/(n|.S;) is the conditional clear
probability and we compute it belowQ)(n) is the probability that: has data to
send given that the medium is clear and the backoff countegrns. For saturated

demands@)(n) = 1. We deriveQ)(n) for unsaturated demands in Section 3.5.1.2.
For the staying idle probability, we havé,(n|S;) = 1 — Py (n|S;).

To computePyy(n|S;) and Py (n]S;), assume that both transmission and idle
times are exponentially distributed. (We relax this assiwngn Section 3.5.1.1.)
Let 7}, denote the average transmission time, computed based &atsre and
transmission rate of the sender, dfg, denote the duration of a time slot. Then

we have:

P10(7’L|SZ) = Tslot/TM(n) (33)

Plo(n|Sl) =1- Tslot/T#(n) (34)

The conditional clear probability'(n|S) = Pr{l,s < .}, wherel,s is

the total interference at (when nodes in5' are transmitting) and,, is the CCA
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threshold./,, s is the sum of constant thermal noiBg,, the background interfer-
enceB,, and interference due to data transmissions by nodésercept forn
itself. Thus,l, s = W, + B, + Zses\{n} R,,. To estimate this sum, we assume
that each term is a lognormal random variable. The standgpbach for dealing
with the sum of such variables is to approximate it by a sitgdg@mormal random
variable [25, 94]. Following Fenton [25], we find a lognormahdom variable that

matches the mean and the variancé,gf.

Formally, assuming thaB,, and R, (Vs € S) are independent, we have
E[Lys) = Wi + By + 3 6\ (ny Rons @ndVar [l s] = By + 30 g\ () REF. Let
e? be a lognormal random variable with ~ N (u, o%). The first two moments of
e” are E[e?] = e#t7°/2 and E[e??] = e%t20”, Equating the first two moments of
e? andl,s gives: (i)e"+"/? = E[I,5], and (ii)e* 27" = E[I2 ] = Var[lys] +

(E[l,s])*. Therefore,

n

1
o = 2log Ellyys] — 5 log E[IZg (3.5)

o® =log E[I}s] — 2log E[Is] (3.6)

We can then approximaté(n|S) as
C(n|S) ~ P{e? < B,} = P{Z <logf3,} = @[bgﬁ%],

where®[z] = —— [ e du s the standard normal CDF.
Computing the stationary probabilities 7;: Having derived the transition matrix

M, we can compute the stationary state probabilitieby solving the following
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system of linear equations:
> miM(i,j) =7 (Vi) (3.7)

Sm—1 (3.8)

where Equation (3.7) comes from the property that the statipprobabilities of
the current and next states are equal, and Equation (3.8)atiaes the sum of
the stationary probabilities to 1. For sparse maitrdx~ can be efficiently solved,
for instance, usindsqr [75]. Section 3.5.1.3 describes how to makesparse to

enhance scalability.

3.5.1.1 Handling Similar Packet Sizes

The previous section assumes variable packet sizes angeindent transi-
tion probabilities for various nodes. But when all nodes tiigesame packet size,
the independence assumption no longer holds. Specifiedign two nodes within
carrier sense range transmit simultaneously, the stareaddimes of their trans-
missions will get synchronized with each other. The syneization occurs be-
cause they will transmit simultaneously only when theird@m backoff counters
both reach 0 within a tiny interval (otherwise the node thainds down to O later
will sense the carrier and defer to the earlier transmiggitf]. The synchronized
transmission and the same transmission time result in sgnded completion.
Note that synchronization occurs even when the packet simesimilar but not
identical, since the transmissions start within one tino¢ difference and finish by

a constant offset.
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To handle such scenarios, we construsyachronization grapfor each set
S of transmitting nodes as follows. Two nodes € S are connected in the syn-
chronization graph fof (denoted agx,(5)) if C(s|{t}) < 0.1 andC(t|{s}) <
0.1, whereC(i|{j}) denotes the clear probability at noflezhen node;j alone is
transmitting. We find all the connected components&:ig, (S), where each con-

nected component representsyachronization group

Then we make two modifications to the transition probabsifi/ (i, j) to
account for synchronization effects. First, if there existo nodesn andn in the
same synchronization group 6f,,(S;) such thatn € S;,n € S;, thenM (i, j) =
0. This is because all nodes in a synchronization group mutstrextransmission
mode together. Second, the probability for all nodes in alsgonization group
to exit the transmission mode togetherTis,. /7). In comparison, with variable
packet sizes, due to the independence assumption the abogéion probability

isII,

fsé;f) (for all n in the synchronization group).
12

3.5.1.2 Handling Unsaturated Demands

The main challenge in handling unsaturated demands is &stign)(n)
which is the probability that has data to send when its backoff counter is 0 and the
channel is clear at. With saturated demands, it has a constant value of 1, blt wit
unsaturated demands it must be computed to ensure thaaffie demandsl,, are
not exceeded. Computing@(n) is difficult due to strong inter-dependency among
nodes.)(n) depends on how often the channel is cleas,avhich depends on the

amount of traffic generated by the other nodes, which in tepedds o) (n).
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We develop an iterative algorithm to compuge The algorithm initializes
@ to 1 for all senders. In each iteration, the algorithm firstivés the transition
matrix M based on the old) values and computes the stationary probabilities
and the achieved throughptft' = >~ . 7. It then updates) based on their

values in the previous iteration. For this, we use the faltmwelationships:

QOld(n) X Tﬂ(n) _ o
O X To(n) & Tog () o (3.9)
Q" (n) x Ty,(n)
Q"% (n) x T,(n) + Toz(n) S dn (3.10)
Q™) <1 (3.11)

whereT,¢(n) represents the average time gap between two consecutissris:

sions fromn and7),(n) is the average transmission time of a packet fram

Equation (3.9) captures the relationship betwéén) and the node’s send-
ing rate in the previous iteration. Equation (3.10) caufet the total amount
of traffic sent byn cannot be more than the demand. Solving the three constraint

yields

_ d, 11—t
Q"% (n) = min {1, Q" (n) g o } . (3.12)

At this point, we could directly us@ ¥ (n) as our estimate for the next iteration.
For quick convergence, we apply a relaxation procedureishammonly used in
equilibrium computation [54]. We s&p"*V(n) to be a linear combination of the
computed?™™ (n) andQ°'4(n): Q"% (n) = a - Q"% (n) + (1 — a) - Q°"%(n). Our

evaluation uses: = 0.9, though we find that the model converges quickly for a

wide range ofv.
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3.5.1.3 Enhancing Scalability

The general sender model, as presented earlier, re@lirsgtes and”v x
2V transition matrix forN senders. To enhance scalability, we use two techniques
that prune the states and transitions. First, we prune adletlstates that involve
too many synchronized transmissions, which should occtin l@iw probability.
Specifically, given stateand the corresponding, we eliminate if the number of
edges in the corresponding synchronization graph(S;) exceeds a given thresh-
old, which is set to 2 in our evaluation. Second, we prunehaké state transitions
whose transition probabilities that are too low. Specificale reset the transition
probability M (i, 7) to O if it falls below a threshold (which is set to 0.001 in our
evaluation). With common configurations, transitions frono ; such that> 2
synchronization groups exits the transmission mode is ngdoallowed. Simi-
larly, transitions with one node exiting transmission amé starting it tend to be
filtered out as well. In this way, we can reduce the number ofz&ro entries in
M, thus improve the efficiency of sparse linear solvers sudsggsn computing
the stationary probabilities. The combination of these teahniques is highly ef-
fective. For example, consider 10 senders inxa5 grid topology, where any two
direct horizontal, vertical, or diagonal neighbors canrfezech other. Without prun-
ing, the transition matrix has 1024 states and more thanleomiransitions. After

pruning, it has only 370 states and 1736 transitions.
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3.5.2 Receiver Model

We now present our receiver model for broadcast traffic. al ¢s to

estimate the goodput,.,, (i.e. the receiving rate). We havg,, = nt,.(1 — L),
I — Tpa load

where L,,,, is the packet loss rate from to n, andn = Tr e e

represents the fraction of transmission time for the paylexcluding header and

preamble overhead).

A key challenge in estimating,,,,, is relating slot-level loss rates (derived
from ourslot-levelMarkov chain) to packet-level loss rates. Our experimemss
that slot-level loss rates.€., the fraction of time slots in which loss occurs) can be
quite different from packet-level loss rates. For exampleen loss comes from
hidden terminals, where senders do not sense each otheraard collisions, a
packet is usually corrupted partially. In this case, thekpatevel loss rate can be
significantly higher than slot-level loss rate. Considansmission of 10 packets,
which contain altogether 1000 time slots. Even if only aib®0% slots (100 slots)
are lossy, they can cause a packet loss rate as high as 1008séf lbssy slots are
distributed across all packets. Below we first analyze thelslel loss rates and

then convert them into packet-level loss rates.

3.5.2.1 Conditional Slot-Level Loss Probabilities

Let I;;‘S = W, + B, + >_,.5 R be the total interference at We allow
t = n because: and sendefn may be transmitting at the same time. At the slot

level, a loss occurs when either SINR falls belgywand or RSS falls below,,. Let

lrnn)s = PH ?1”” < 0, } be the slot-level loss rate caused by low SINR wiseis
n|S
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transmitting. Let’’> = Pr{R,,, < 7.} be the slot-level loss rate caused by low

RSS.

(1n|s Can be computed in a manner similar to that of conditionargbeob-
ability. Approximate[;;ls = W, + B, + > _,c Rin With a single moment-matching
lognormal random variable?, whereZ ~ N(u,o?). Since the ratio of two in-
dependent lognormal random variablgs,, ande? is also a lognormal random
variable, lete?" = fizz whereZ’ ~ N(u/,0?). We havey' = E[log R,,,,] — p and
0? = Var[log R,] + 0. Thus:

mn ! 1 5TL - !
Cpmjs = P R* <0, S ~PHe” <6,} = [M] . (3.13)
In|S o

There are two ways to estimaﬂﬁms = PH{ R, < 7n}. When the distribu-
tion of R,,, is available, we can directly compute{ft,,,, < v,}. In practice,R,,,
has to be estimated and is subject to estimation error. Tamize error, we ob-
serve that when there is only a single sender and no extetealérence, all losses
are due to low RSS. Thus we can directly use the measuredtdaskeate under

transmissions from a single senderto estimate’> .

3.5.2.2 Packet-Level Loss Probabilityl.,,,,,

Packet losses can be broadly divided into three categoR#st, packet-
level losses can stem from low RSE{,), which is not directly related to collision.
Second, losses can stem from collision with packets frons&inee synchronization
group. In this case, the fraction of lost packets§'Y) is close to the fraction of

lost slots. Third, losses can also stem from asynchronanstnissionsd.g, from
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hidden terminals). In this case, the packet level loss &fg") can be much higher
than the slot-level loss rate. Assuming independence arttonghree types of

losses, the overall packet-level loss rate is:

Ly = 1= (1= L5,) % (1 — L) x (1 — L) (3.14)

L can be estimated ds— (1 — ¢35 )%u/Ts0t, Note that when measured
packet loss rate from a single senders available, we can directly use the loss rate

asLys without first converting it intd’;>>

mn*

To deriveL¥", let SS(m) be the set of states that contain at least one syn-

mn?

chronized transmissions involving, i.e.,
SS(m) = {i|m € S; A S; contains node(s) synchronized witk}.

We then estimaté:»" as

ZieSS(m) 7Ti£"”"|si . ZieSS(m) Wigmnl&'
Zz| mesS; T tm

which gives the total fraction of slot-level losses occdrrehenm collides with

syn __
Lmn -

Y

background traffic synchronously. Recall thgtis the throughput ofn.

To deriveL®Y"  we first compute the slot-level loss rates due to asynchumno

mn !

collisions between foreground and background traffic:

Zi:iQSS(m)/\mGSl' ﬂ-igmmsi o Zi:iQSS(m)/\mGSi 7Ti£mn|Si
Zz| mes; Ti tm

We model the background traffic as an ON/OFF process with rexpically dis-

asyn __
‘gmn -

tributed ON and OFF periods. L& and% denote average durations of the two
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periods. Under the assumption that the foreground and lbachkd traffic arrives
independent of each other, the slot-level loss rate expezct by the foreground
traffic should be equal to the fraction of time that the baokigd traffic is in ON
periods. That is,
bg
— 2 = (3.15)
bE e

asyn

We havers = T, and the above equation yielﬁ = %TM.

A packet is successfully received if it starts with the baokmd OFF period

and the rest of this OFF period lasts at least the packetririgasn time. We thus

have:
e T
1— Ly = _tOff cexp | —== (3.16)
toi + T to
gasyn
= (1 - KZ?LH) - exp |:_1_m722‘5yn:| (3.17)

where the first term on the right hand side of Equation (3.36hée probability
that the packet transmission starts in the OFF period anddbend term is the

probability that the rest of this OFF period lasts for at telgs

3.6 Unicast Traffic

In this section, we extend our broadcast models to handleasntraffic.
There are two key differences between unicast and broatteaxsimissions. On
the sender side, the transition matfik is different under unicast due to additional

ACK overhead and exponential backoff. On the receiver sliere are additional
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losses due to ACKs colliding with both data and other ACKs.pMsent the sender

side extensions followed by the receiver side extensions.

3.6.1 Extensions to Sender Model

The transition matrix for the sender, in particulér/ (m) and CW (m)
in Equation (3.2) are different for unicast traffic. Unicasts additional overhead
from SIFS and ACK. Ifts;rs andt 4ok denote the number of time slots for SIFS

and ACK,OHmn =tprrs +tsirs + (1 — Lmn)tAC’K-

CW {(m) can be derived based on the packet-level loss kgte across all
receivers as follows. Lt (L) be the average contention window under packet loss

rate L, andRM AX be the maximum number of retransmissions. Then:
RMAX . :
min ]- 21 - 1, max i

5 (3.18)

=0
A sender may transmit to more than one receiver, each witffexrelt loss
rate. We estimat® H (m) andCW (m) as the weighted average over all receivers,
where the weights are based on the total transmissions teteévers. Lets,,,
denote the expected number of transmissions (includingii$teransmission) for
each data packet sent framto n. For simplicity, the weight can be approximated

asiz(j"gﬁi"&; -. Assuming independent packet loss@s,, = >/ 2. There-

fore:
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oW Gn X d

CW(m) = H(Ly,y,) o (3.19)
nelg(m) ZTERecv(m) GmT’ X dmr

OH G X d
nERch;(m) ZTGRecv(m) Gmr X dmr

whereRecv(m) denotesn’s receivers.

The new expressions o H (m) andCW (m) above enable us to compute
the transition matrix and state probabilitiesfor unicast traffic. From that the
throughput fromm to n can be computed as,. = >

ijmes; T andt,,, = tmx -

Amn XGmn
Zr Amr XGmyr

3.6.2 Extensions to Receiver Model

Consider noden sending data to node. As for broadcast, we decom-
pose packet-level unicast loss rdig,, into three components: (> — losses
due to low RSS (and not collisions), (i)»" — losses due to synchronized colli-
sions between foreground and background traffic, and Ljj}" — losses due to
asynchronous collisions between foreground and backgrtraffic. Assuming in-

dependence agait,,,, = 1 — (1 — L) x (1 — L¥") x (1 — L2y,

The key extensions that we make are: (i) extéfjf] to include RSS induced
losses for both DATA and ACK packets, and (ii) extefig, s to include SINR
induced losses due to collisions between ACK/DATA, DATAMCACK/ACK (in
addition to DATA/DATA), which is then used to comput&™ and L™ in the same

way as for broadcast. Below we describe these extensioretail.d
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Estimating RSS-induced loss.} : As before, let)ss = PH{R,., < v,}. Simi-

larly, let 2% = PH{ R, < 7m}. The combined RSS-induced loss on DATA and
ACK is then

LSS =1—(1— g;ii)TM(m)/Tslot x (1— e;s’sl)TACK(n)/Tslot

whereT ok (n) is the duration of an ACK sent by. Here we assume that the

RSS-induced losses for DATA and ACK are independent.

Estimating SINR-induced loss/,,,,,s,: We consider the following three cases of

low SINR induced losses:

C1. DATA loss caused by other DATA'®RATA transmissions fromn to n get
lost due to collisions with DATA transmissions by nodesSin\ {m}. This
case is already considered in the broadcast scenario andwe f}, ; =

Pr{fmx < §,}, where]ﬁ}gi = Wit Bn+ Y ies, Bin-

nls;

C2. DATA loss caused by other DATA's and ACKA: synchronization group
G (m ¢ G) of Gy, (5;) exits the transmission mode while all nodes in
S; \ G continues transmitting. In this case, the ACK’s generatgdes
cipients of nodes in7 could potentially increase the data loss rate from
m to n. To quantify such effects, let random variab®e. (m,n) denote
the noise experienced bywhenm stops transmitting, causing some node
in Recv(m) to send an ACK back t@. The total noise at is therefore
fggi = Wit Bnt iesng Bint D ieq Rack(t, n). Letj be the new state after

nodes inGG stop transmitting. Among all possible next statesifr transit to

87

www.manharaa.com




M (i,5)

(excluding;i itself), j will be chosen with probablllt){— Therefore, the

total slot-level loss rate caused by ACK'sg, ¢ (G) = Pr{ B <

1— J\/[(z i
5.

C3. ACK loss caused by other DATA's and ACKEhe synchronization group
G’ thatm belongs to exits the transmission mode while all nodes;in
G’ continue transmitting. Lej’ be the new state resulted from such tran-
sition. During such transition, ACK’s sent by receivers aides inG’ \
{m} combined with DATA's sent by nodes ifi; \ G’ together can poten-
tially corrupt ACK'’s sent fromn to m. The probability for this to occur is
lomls, = 1= M(“ Pr{ﬁ’g“z < On}s Il = Wi & B + Yiespor Bim +

EtEG’\{m} Raac(t,m).

Note that with our pruning strategies described in Secti®nl33, when a
group G stops transmitting, we do not need to worry about havinglrarogroup
entering or exiting the transmission mode at the same tiraeaflise the transition
probability would become too small). Under the independeagsumption, we can

compute the combined conditional slot-level loss rate as
1—- gmn\S = (1 - gglln\S) X HG:mszG(l - ggv,zn\S(G)) (1 - fmn|s) (3.21)

Now the only remaining issue is to estimake. (m,n). The main chal-
lenge is thatn may have multiple receivers and RSS from different recsiase
different. To address this, for each sender we compute thghtesl average of

interference that its receivers generate, where the weglet based on the traffic
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demands and delivery probabilities to the receivers. $ipatly, we approximate
RSS contributed byh's ACKs at node: as a log-normal distribution by computing

its mean and variance, denoted By, (m, n) and R¥% (m, n), as

ack

- Gmrdmr D
Roee(m,n) = Y S Gy (1= L) - Ren (3.22)
r&Recv(m) mr! Smr!
var Gm?“dmr var
ack(m7 n) = Z Z G /d , (1 - Lm?‘) ' an (323)
reRecv(m) e

wherelL,,, is the packet loss rate obtained during the previous itarandG,,,, =

RMAX k
k=0 Lm

Finally, once all the loss ratds,,,, are available and,,,, has been computed,

1 LRA AX+1

we can compute the goodput @s, = Nmn—&——, W whereG,,,, is the average
number of transmissions per data packet,- LZMAX+1) gives the packet delivery
rate (after the initial transmission art\/ AX retransmissions), anglis used to

exclude the overhead due to packet headers and the preamble.

3.7 Obtaining Model Inputs

In this section, we describe how we obtain the various infutaur model.
To estimate pairwise RSS and the external interferencecht made, namely?,,
and B,., we measure RSSI atwhen onlys is transmitting. We only requir@(N)
measurements because wireless is broadcast medium aadedllars can measure
RSSI when a node transmits. From Retsal. [88], RSSI,, = 10logi (M).
For simplicity, we assumé, = 0. (This would be true when interference from

external transmitters is negligibleR,, is then estimated by finding a log-normal
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distribution that best fits RSSI measurement data. Retand R*" denote the
mean and variance of the best fitting log-normal distributidhe final RSS dis-
tribution is estimated as a log normal distribution with mex ., and variance
of RV . t”t%t“ We estimate RSS variance & - t"t%t“ because we are
interested in RSS variation in the time scale of slots whi&SRis measured as an
average over the preamble period aRi¢f"” is % of the slot-level RSS vari-

eamble

ance.

As mentioned in Section 3.5.2.1, when the RSS distribusavailable, we
can estimate RiR,,,,, > v, } immediately from the distribution. In practice, because
RSSI measurements are only available on received packétaaging the true RSS
distribution is hard. To get around the problem, we can eg@®{ R,,,, > 7, } by
directly computing the delivery rate €., the fraction of packets that are received)

using the RSSI measurement data.

We find that when the delivery rate is too loe.q, below 10%), computing
the mean and variance of RSS based on RSSI measuremensssyggidicant error
because RSSI measurements are only available on receickdtpa Accurately
estimating the trué,, under such cases is an interesting subject on its own, and we
leave it as part of our future work. In our current testbedwation, we consider
only the sender groups such that every node paindr within the sender group
has either.,, < 90% or L,, = 100%. In the former case, average RSSI is used for
estimatingR,,, while in the latter case we assume, = 0. For fair comparison

with the UW model, in all 2-sender evaluation we do not appbyabove filtering,

and compare the estimated and actual values over all seragysy
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Our model also requires the values of a few radio-dependargtants. For
testbed experiments, based on our hardware, we use -95 dBherasal noise,
2.5 dB as SINR threshold, and -85 dBm as CCA threshold. Foulation experi-
ments, we use the default values in Qualnet, where the theorse is -92.52 dBm
in 802.11a and -102.5191 dBm in 802.11b, SINR threshold5sdB, and CCA
threshold is -85 dBm in 802.11a and -93 dBm in 802.11b.

3.8 Simulator-based Evaluation

We evaluate the accuracy of our model in both simulation astbed set-
tings. These two evaluation methodologies are complemenieestbed experi-
ments allow us to quantify accuracy in more realistic sdesarhich are subject to
fluctuation in the RF environment, measurement errors, anétons across real
hardware. Simulation offers a more controlled environnzemt allows us to more
comprehensively assess the accuracy of individual commsmeour model. Many
of the simplifying assumptions in our model relate to thefattion of the MAC
protocol, and any inaccuracy due to these assumptions irtipg@asimulator results

as well.

3.8.1 Qualnet Modifications

We use Qualnet 3.9.5 for our evaluation. It has been showrotoge a rel-
atively accurate and realistic simulation environmen{.[%e make the following

modifications to the Qualnet.

Correct desynchronization problem: The IEEE 802.11 standard states
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that when the medium is busy at any time during a backoff #tetpackoff proce-
dure must be suspended without decreasing the value of thefb&imer. However
in Qualnet, the backoff timer is decremented by propagatelay and causes time
desynchronization. Such desynchronization results inragalistically low colli-
sion ratio, as reported in [14] and confirmed by our evaluatite fix the problem
by ensuring that the backoff timer is not decremented whemtédium is busy at

any instant during a time slot.

Disable EIFS: According to the IEEE 802.11 standard, in DCF a frame
transmission must use EIFS whenever a frame transmissginsbut does not
result in the correct reception of a complete MAC frame. Hasveseveral research
papers [14,66] report that EIFS results in unfairness, agdests disabling EIFS by
setting EIFS duration to the same value as DIFS. Existingsgts such as Atheros
also have a configurable EIFS duration. We use the above ahéitdisable EIFS,

and postpone modeling EIFS to our future work.

Modify capture effects: In Qualnet, a receiver accepts frames with stronger
signals only when they arrive earlier than reception of ofih@mes. Recently,
Kochutet al.[51] report that real wireless cards accept frames witmgjeo signals
even if they arrive after reception has started. Thereteeemodify Qualnet to ac-
cept frames with stronger signals regardless of whethegrdhve earlier or later
than reception of other frames. In contrast to modificatiosed in [51], we also
accept frames that arrive after preamble of the frame beiogjved. This simplifies
our model, and we plan to explore a detailed model of captifieets in our future

work.
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Support SINR model: The 802.11 implementation in Qualnet uses a Bit-
Error-Rate (BER) model, where it first computes SINR of therent packet and
uses its SINR to determine BER and convert it to the packet dage. In order
to match Qualnet simulation, our model needs the same BHR taplemented
in Qualnet. However Qualnet source code does not reveal iR tBble it uses
for 802.11. To ensure consistency across our model and @uake implement
the commonly used SINR model in both Qualnet and our mode¢helBER table
becomes available, our model can immediately support BEReiwy using BER

table to map from SINR to loss rate.

3.8.2 Evaluation Methodology

We evaluate our model for both broadcast and unicast by nvgtyie num-
ber of simultaneous senders, the frequency band, and thverketopologies. We
consider both saturated demands and unsaturated demédmeodemand is normal-
ized by the MAC-layer data rate, and a sender with saturadethdd has demand
of 1.

Throughout the evaluation, we use 25 node topologies. $empmerate
1024-byte UDP packets at a constant bit rate (CBR). The bstraling rate to
the air may not be constant, however, due to variable caotelelay. We use
the lowest MAC data rates.e., 6Mbps in 802.11a and 1Mbps in 802.11b. The
communication ranges of 802.11a and 802.11b with the lodegst rates are 169

m and 348 m, respectively.

For each scenario, we conduct 10 random runs, where eacamdamly se-
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lects the senders and receivers and the demands. We usdinediaased on max-
imum possible) throughput to refer to the total sending (eteluding the packet
header and preamble) and normalized goodput to refer tetedving rate (exclud-
ing packet overhead). We quantify the accuracy of our mogeldmparing with
the actual throughput and goodput and computing mean absaitor (MAE) and
root mean square error (RMSE). MAE is defined—yaé““;“i““‘”"', and RMSE is

defined as\/w wheren is total number of predictions. We also study
the accuracy in detail using scatter plots of actual andneséd values. For clarity,

in the scatter plots the data points are plotted in an inargasder of actual values.

We consider the following scenarios below: (i) 2 broadcasters with sat-
urated demands; (iiy broadcast senders with saturated demands)\iljroadcast
senders with unsaturated demands; (iviinicast senders with saturated demands;

and (v) N unicast senders with unsaturated demands.

For the first scenario, we compare our model with both Qualmetilation
and UW model [88]. The UW model predicts the impact of integfese in the pres-
ence of two broadcast senders with saturated demands. deded using(N)
measurements similar to ours — each node takes turn to lastgolckets and other
nodes log RSSIs and packet delivery rate. Each node obtaiRSISI versus de-
livery rate profile using these measurements. To predicinipact of two senders
trying to send simultaneously, it first estimates the prdtglwith which senders
defers based on the RSSIs they receive from each other. iToa¢sta receiver’s
goodput from a sender, it uses the standard SINR model, Wwk#é¢ing the activity

from the second sender as additional interference at tleévexc Since there are no
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existing models for the other scenarios, we compare our huodgwith the actual

values obtained in Qualnet.

3.8.3 Broadcast Traffic

We begin our evaluation by studying broadcast traffic, st@mvith the sim-

ple case of two senders with saturated demands.

3.8.3.1 Two Saturated Senders

Figure 3.1 shows the accuracy of throughput and goodpuhatds of our
model and the UW model. The graphs plot the actual valuesreatan Qualnet
and the predictions of the two models. The legend conta@fKRMSE values for

the two models.

We see that both models perform well overall, though our rhdmore
accurate. The RMSE in our model is under 0.5% while that ofdli¢ model is
14% or more. The UW model also tends to have highly inaccyragdictions for

a few cases.

The error in UW model is mainly because it assumes a packebeas-
ceived as long as its SINR exceeds the threshold. It ignbeesther condition that
RSS should also exceed the radio sensitivity for a packeetoebeived. For ex-
ample, when there is only thermal noise (-95 dBm) and RSSaseaf92.5, SINR
would be above the 2.5 dB threshold, and the packets aredmyesito be received
100% of the time under the UW model. However, in reality, WRSS is between

-92.5 dBm and -85 dBm (the radio sensitivity value for 802.11 Qualnet), the
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Figure 3.1: 2 saturated broadcast senders using 802.11a i &agrid topology
over an300m x 300m area.

delivery rate is in fact 0. Unfortunately, there is no simpiension to the UW
model to accommodate the radio sensitivity constraint iseghe model builds RF
profile directly based on delivery rate. With the radio stvisy constraint, there is

no longer a direct translation betweg&y,. and delivery rate since their relationship

changes fromPr{-L=_ > §.1 to Pr{R,. > ~, and

RST 1
T, %~ > 0,}. Foragiven

I+W,
delivery rate,R,, is no longer unique.
3.8.3.2 N Saturated Senders

Next, we consider the case of broadcast senders. Each sender has satu-
rated demand, as before. We evaluate our model by varyingeqaency band,

network topology, and the number of senders.

Different frequency bands (802.11a and 802.11b¥igures 3.2 and 3.3 show the
scatter plots of actual and predicted throughput and gdodpder 802.11a and

802.11b. In each case, there are 10 broadcast senders finiteidemands. We
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Figure 3.2: 10 saturated broadcast senders using 802.H'a 5 grid topology
over an300m x 300m area.
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Figure 3.3: 10 saturated broadcast senders using 802.HLb 5 grid topology
in an500m x 500m area.

see that our model is highly accurate in both cases, withtkess5% RMSE. The
goodput error is lower than the throughput error becauseymegeivers have no
connectivity to one or more senders, and it is easier to préue exact goodput for

such receivers.

Different network topologies (grid and random): Figure 3.4 and 3.5 show the
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Figure 3.4: 10 saturated broadcast senders using 802.Ha 5 grid topology
in an500m x 500m area.
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Figure 3.5: 10 saturated broadcast senders using 802.Irbadiom topologies,
where nodes are randomly placed in3@m x 300m area.

results for 10 broadcast senders using 802.11&0Wa x 500m grid topology and
300m x 300m random topology. In each case, the model closely tracksatumka

values and the error is around or below 5%.

Different number of senders (2-10): Figure 3.6 plots throughput and goodput

RMSE as a function of the number of broadcast senders. Wehs&dhie error
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Figure 3.6: RMSE under a varying number of sender.

tends to increase slightly with the number of senders dueti@ momplex interac-
tions. Yet under all numbers of senders, the model can keeRithin 7% for

throughput estimation and within 3% for goodput estimation

3.8.3.3 N Unsaturated Senders

We now consider unsaturated senders and allow nodes to Hferernt traf-
fic demands. We assign each sender a normalized demand hdiviesnd 0.9 and

use the corresponding inter-arrival time for CBR traffic.

Figure 3.7 shows the results for 10 broadcast senders uBthgBa in & x5
grid topology over &00m x 300m area. We see that the accuracy of our model for
unsaturated demands, which are harder to model, is highlaandecomparable to

its accuracy for saturated demands.
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Figure 3.7: 10 unsaturated broadcast senders using 808.a%a 5 grid topology
over an300m x 300m area.

3.8.4 Unicast Traffic

In this section, we turn our attention to unicast traffic analeate how well

the unicast extensions of our model perform.

3.8.4.1 N Saturated Senders

We start with the case ¥ saturated senders. Figure 3.8 shows the result
for 10 unicast senders using 802.11a. As for broadcastirtif predictions of our

model track the actual values closely, and the RMSE is wBin

3.8.4.2 N Unsaturated Senders

We conclude our simulation-based evaluation by studyieg#se of unsat-
urated unicast senders. As above, we have 10 senders u&rid8on & x 5 grid

topology. The demand for each sender is assigned as for daeldast setting in

Section 3.8.3.3.
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Figure 3.8: 10 saturated unicast senders using 802.11&xbagrid topology over
an300m x 300m area.
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Figure 3.9: 10 unsaturated unicast senders using 802.14a 5 grid topology
over an300m x 300m area.

Figure 3.9, shows the prediction results for this settingr i©@odel continues
to yield accurate predictions. Not only is the net RMSE untBér, but we also

do not have individual instances where the predictions afroadel are highly

inaccurate.
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Summary In this section, we used simulation to evaluate the accucdayur
model in many diverse settings which include broadcast anchst traffic, unsatu-
rated and saturated demands, and different number of senWerfind our model’s
predictions of throughput and goodput are accurate in aels#gttings that we con-
sidered, and its RMSE value is typically under 5%. We also fivad our model,
while being more general, is also more accurate than a staid-model [88] for

the specific case of 2 broadcast senders with saturated deman

3.9 Testbed-based Evaluation

In this section, we evaluate our model using testbed ex@stisn Our goal
Is to quantify the accuracy of our model in real RF environteeand with real
hardware. We employ traces from two different testbedsH purpose. Below,
we describe these testbeds and the traces, followed by #ieation results for

each testbed.

3.9.1 Testbeds and Traces

The two testbeds are our own indoor wireless testbed and Weddtbed
used by Reigt al.[88]. Our testbed has 22 DELL dimensions 1100 PCs, located on
the same floor of an office building. Each machine has a 2.66 IGtgzCeleron D
Processor 330 with 512 MB of memory, and is equipped with BDa/b/g NetGear
WAG511. Each machine runs Fedora Core Linux. WeMaewifias the driver for

the wireless cards, and uskck to collect traces.

We collect the trace as follows. First, we let one node braadt000-byte
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UDP packets at full speed for 1 minute and log received packetll the other
nodes. We repeat the process until every node in the teséisdakbadcast once. We
refer to this as 1-sender trace. Applying the approach destm Section 3.7 to the
1-sender trace gives us estimate of RSS between every paades and external
interference at each node. Since there is a resident 808. Witeless network
that causes strong interference, we collect traces usilyg802.11a on our testbed.

Unless otherwise specified, each node uses 30 mW transmjssicer.

In order to evaluate the accuracy of our model, we measuradiual send-
ing and receiving rates under multiple senders. Thesedraeonly needed for
obtaining “ground truth” and not required for using the mlodgiven a specified
number of senders, we randomly seleck nodes and let them broadcast simul-
taneously for 1 minute. All other nodes log received packdtsthe 1-minute
broadcasting period, the nodes send as fast as possiblefsaturated demand ex-
periments. For unsaturated demands, each sender is abaignemalized demand
which is total demand divided by the MAC data rate. The norredl demand is
selected randomly between 0.1 and 0.9 and specifies the maxnate at which
the sender can send. For each configuratien,the specified number of senders

and demand type, we conduct 100 random runs with differdrifgesenders.

The UW testbed had 14-nodes inside an office building. Theegrave use
are same as those used for evaluating the UW model [88]. Tileetion methodol-
ogy is similar to the above except that these traces contdyrni2dbroadcast senders

with saturated demands. We study both 802.11a and 802.1fidpthese traces.
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3.9.2 The UW Testbed

We first present the results for the UW testbed in this seaimhthen for

our testbed in the next section. Figure 3.10 shows scattsrpff predicted and

actual throughput and goodput under 802.11a.

1

0.951

throughput
o
3
ul
goodput

<)
~
I3
X
X

o
o €
a

— Actual
Ours: RMSE 0.01

o
)
T

MAE 0.01
UW: RMSE 0.11

MAE 0.07

o

&l

a
T

BDRRRR . N
5 10 15 20 25
sender prediction

od
(2]

(a) throughput

1

— Actual

Ours: RMSE 0.11

MAE 0.04

UW: RMSE 0.11

MAE 0.05

50

© 100 150 200
receiver prediction

(b) goodput

Figure 3.10: 2 saturated senders using 802.11a in UW traces.

As we can see, our model closely tracks the actual througiqmigoodput.

UW model has higher error in the throughput prediction. Mospredictions occur

when the UW model incorrectly predicts that two sendersrdefeach other. This

error is caused by the linear interpolation heuristics toreste delivery probability

for a hypothetical RSSI [88]. The heuristic implicitly assess delivery probability

is linearly proportional to RSSI, which may not be true inlitgalnterestingly, UW

model has comparable accuracy to our model in goodput firealicA closer look

reveals that for many links that have higher throughputreth@ir goodput is often

close to 0 due to poor link quality. Such cases are easy tagbyechich reduces
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Figure 3.11: 2 saturated senders using 802.11b in UW traces.

Figure 3.11 shows the results for 802.11b. As for 802.11anmdel has
more accurate throughput prediction than the UW model,enbdth models have

comparable prediction errors for goodput.

3.9.3 Our Testbed

For our testbed, we evaluate our model by varying number mdeses and
using both saturated and unsaturated demands. Figure 3.12, 3.14, and 3.15
show scatter plots of throughput and goodput under 2, 3, 45asenders with

saturated broadcast demands.

Since the UW model is only applicable to 2 senders, we compdlethe
UW model only for 2 senders. As we can see, our model trackadtual through-

put more closely than the UW model, and yields comparablaracy for goodput
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Figure 3.12: 2 saturated broadcast senders using 802.bi iraces.
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Figure 3.13: 3 saturated broadcast senders using 802.bi fraces.
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Figure 3.15: 5 saturated broadcast senders using 802.bi iraces.
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Figure 3.16: 3 unsaturated broadcast senders using 80& Iila traces, where
each sender uses 1 mW.
prediction. This is also reflected in RMSE and MAE. For 3, 4 &rsender cases,
our model yields estimation close to the actual rates: itsSENs within 0.12 and

its MAE is within 0.06.

Figure 3.16 shows the results for unsaturated demands 3vaéimders. As
for saturated demands, our model maintains high accurest M SE is within 0.07

and MAE within 0.04.

Summary The testbed evaluation confirms that our model works weléal en-
vironments and using real hardware. Compared with simarapredicting testbed
performance is much more challenging due to factors suctaasdband noisy mea-
surements, as well as environmental variation. Despitgetbballenges, the results

show that our model is effective in predicting throughpud goodput.
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Chapter 4

Small State and Small Stretch Routing

4.1 Overview

Routing finds paths in a network along which to send data. tnis of
the basic network functionalities. The effectiveness aftireg protocols directly
affects network scalability, efficiency, and reliabilityvith continuing growth of
wireless network sizes, it is increasingly important to @lep routing protocols

thatsimultaneouslyachieve the following design goals.

e Small routing state: Using small amounts of routing statessential to
achieving network scalability. Many wireless devices asource constrained.
For example, mica2 sensor motes have only 4KB RAM. Limitingting
state is necessary for such devices to form large networksedder, limit-
ing routing state also helps to reduce control traffic usexute setup and
maintenance, since the amount of routing state and comaffictis often

correlated.

e Small routing stretch: Routing stretch is defined as theoraétween the
cost of selected route and the cost of optimal route. Smaling stretch

means that the selected route is efficient compared to thealptoute. It
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is a key quantitative measure of rowjaality, and affects global resource

consumption, delay, and reliability.

e Resilience: Wireless networks often experience frequepblogy changes
arising from battery outage, node failures, and envirortai@manges. Rout-

ing protocols should find efficient routes even in the pres@fisuch changes.

Existing routing protocols either achieve small worstecesuting stretches
with large routing stateg(g.shortest path routing) or achieve small routing state at
the cost of large worst-case routing stretcheg.geographic routing and hierar-
chical routing). In this chapter, we present the design emgeémentation of Small
State and Small Stretch (S4), a new addition to the routintpppl design space.
S4 achieves a desirable balance among these charactgrastitis well suited to

the wireless sensor network setting.

We make the following contributions.

1. S4is the first routing protocol that achieves a worst-caggng stretch of 3

in large wireless networks. Its average routing stretclasecto 1.

2. S4’s distance guided local failure recovery scheme Bagmitly enhances net-

work resilience, and is portable to other settings.

3. S4's scalability, effectiveness of resource use, aritieese are validated us-

ing multiple simulation environments and a 42-node senstwaork testbed.
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4.2 Related Work

Routing is a well-studied problem, but large-scale wirglestworks have
introduced new challenges. Traditional shortest pathimgyprotocols based on
distance vector or link state algorithms are effective foal networks, but scale
poorly to large networks due to both overwhelming contraffic and the amount
of state to keep at each node. To reduce the overhead, eactiiemand routing
protocols have been proposed, such as DSR [44] and AODV [80kir over-
head depends on traffic demands, and they do not work well Wiege are many
source-destination pairs. As shown in [20], DSR and AODVagate more control
traffic than data traffic in 100 nodes with 40 source-destingiairs. Consequently,
routing in large-scale wireless networks has focused ommi@mg storage and ex-
change of routing state. In this section, we briefly revieevltterature of scalable
routing in these categories: (i) geographic routing, (igrarchical routing, (iii)

DHT-type routing, and (iv) theoretical work on scalableting.

Geographic routing: In geographic routing, each node is assigned a coordinate
reflecting its position in the network. Upon receiving a petcla node selects a
next hop closer to the destination than itself in the coatlirspace. Some ge-
ographic routing protocols use geographic locations as rambrdinates, while
others use virtual coordinates based on network proximityese schemes must
address the problem of getting “stuck” in a local minimum,andno neighbor is
closer to the destination than the current node. Some patgpesch as GFG [10],

GPSR [45], GOAFR+ [56], GPVFR [61] and variants use facedrsal schemes
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that route packets on a planar graph derived from the ofigim@nectivity graph.
Their delivery guarantees [27] depend on the assumptidrthiegplanarization al-
gorithms €.9. GG [28] and RNG [102]) can successfully planaremgy network
graph. These planarization algorithms typically assumaitdisk or quasi-unit
disk model. However, these models can be inadequate fomiegless environ-
ments due to obstacles and multi-path fading. Katral. [49] have shown that
model failures in real radio environments can cause roygatbologies and persis-
tent routing failures. CLDP [48] addresses the imperfectpiRIpagation problem
using a right-hand probing rule to detect link-crossingd amove them to re-
planarize the graph. The correctness of CLDP comes at a tpeilning each link

multiple times.

GDSTR [62] provides delivery guarantee without requiringnarization
by avoiding routing across the face of planar graphs. ldsgeckets are routed
through a spanning tree. Each node of the tree is annotatkéwonvex hull as the
location aggregation of its subtree. The convex hulls aeel tis determine routing
directions when routing over the spanning tree. The effenss of GDSTR has
yet to be demonstrated in real networks. One of the majorermisas that, due to
irregular communication range, the hulls of many pairs bfisgs nodes in a tree

may intersect and therefore significantly degrade the effay.

The geographic coordinate-based routing schemes havesittleee dif-
ficulties for wireless sensor networks. First, accuratdagtion either requires
careful static setting or access to GPS, with consequences$t or need for line-

of-sight to satellites. Second, geographic distances el predictive value for
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network performancee(g.loss rate). This may result in paths with poor perfor-
mance. Third, even with GPS and ideal radios, the best r@uiretch for geo-
graphic routing i) (c) in GOAFR+ [56] and ARF [57], whereis the length of the

optimal path. Example topologies exist where this bouniyls {57].

Virtual coordinates reflecting underlying network conmétt address the
first two difficulties, but still face the challenge of “deadds”, for which a recovery
scheme is required. In addition, the overhead of computimd) storing virtual
coordinates is not negligible. For example, NoGeo [86] u3eg'N) perimeter
nodes to flood theV-node network so that every node can learn its distances to
all the perimeter nodes. Each node determines its virtuaidioate based on the
distances to the perimeter nodes. However, perimeter noekes to store) (V)
pair-wise distances among them. It is not scalable in langeless networks with
limited memory space per node. GEM [72] achieves greatdalsitity by using
triangulation from a root node and two other reference nodesvever, the routing
stretch is larger than that typical of geographic routirgpathms, and there is the

additional cost of recomputing routing labels resultirmnirnetwork failures.

Fonsecaet al. [26] have proposed Beacon Vector Routing (BVR) which
selects a few beacon nodes, and uses flooding to construatisgarees from
the beacons to all other nodes. A node’s coordinate is a vettistances to all
beacons, and each node maintains the coordinates of itsbueiy BVR defines
a distance metric over these beacon vectors, and a node qgatkets to the one
that minimizes the distance. When greedy routing stallfrivards the packet

towards the beacon closest to the destination. If the bestdbiails to make greedy
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progress, scoped flooding is used. One of the drawbacks ofiBYRt each packet
is annotated with a full-length beacon vectergabout 40 entries in a 3200-node

network as suggested in the paper), which is significantrmaaat.

None of the virtual coordinate-based routing algorithnw/ate worst-case
routing stretch guarantees. Furthermore, virtual coateis change with wireless

network conditions, which may incur significant control dwead.

Hierarchical routing:  Hierarchical routing is an alternative approach to achiev-
ing scalability. Nodes in a network are divided into clusteFhere may be two or
more levels of hierarchies. Typically, each node mainthili$opological informa-
tion about its local cluster, but only maintains little tdpgical information about
nodes in other clusters. Therefore, routing inside a ctusteptimal, but routing
towards other clusters may traverse a sub-optimal pathyM=isting hierarchical
routing protocols have been proposed, including landnmautimg [103], HSR [76],
LANMAR [32], ARCH [7], Safari [82] and ZRP [38].

Landmark routing is based on Landmark Hierarchy, which cadymnami-
cally configured. There are a subset of nodes, called lafdmiarthe network. A
landmark maintains routing state to other landmarks witkeitain radius. Initially,
each router is a landmark of level 0. A subset of level O larmdtsare landmarks
of level 1, and so on. Higher level of landmarks have largdiusa The radius of
landmarks at highest level is at least the diameter of thworkt These are called
global landmarks since all routers can see them. Each noohtaims routing state

for landmarks at different levels within correspondingiusd When routing to-
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wards a destination, a node looks up its routing table antksaioward the lowest
level landmark common with the destination. HSR, LANMAR, BR and Safari

exploit similar idea of hierarchical clustering. None oéth provide routing stretch
guarantee due to the boundary effect: two nodes that aregallysclose may be-
long to different clusters, hence the route between thentdge through cluster

heads or landmarks and can be arbitrarily longer than theegigath.

The clustering technique of ZRP is different. In ZRP, eactienmaintains
an individual cluster which contains all nodes within a zaadius. Implicitly, there
are just two levels of hierarchy. Each node proactively na@ans routing state for all
nodes in its own cluster. For destinations outside the adiRP uses a query-reply
scheme to establish routes as in reactive on-demand ropitoigcols. Although
ZRP can achieve efficient routing stretch for nodes far aptarhay incur large
control traffic overhead as the network scale increasesaoa tlemand routing
request. Furthermore, it is not a trivial decision to makeethkr to store hard
routing state for destinations outside local clusterstdfexd, the routing state may
get arbitrarily large. If not stored, the control traffic okead may recur for every
destination every time. Overall, it is difficult for ZRP tolaeve a desired tradeoff

between routing state and control overhead.

DHT-type routing: Caesaret al. develop VRR [12], a network layer point-to-
point routing protocol inspired by distributed hash tabl&ach node is assigned
a location-independent identifier. All nodes are organiged a virtual ring in

increasing order of their identifiers. Each node maintaingtaal neighbor set
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containing half closest neighbors clockwise and half ceualiockwise. Each node
sets up and maintains routing paths to all virtual neighbloraddition, each node
also maintains state about paths traversing through ithénrouting table, each
entry specifies two endpoints of a path and the next hop tavaagh endpoint.
The basic routing strategy of VRR is similar to greedy foriviag in geographic
routing protocols. Among all endpoints in the routing table one with identifier
closest to destination is chosen and packets are forwacdin thext hop towards
this endpoint. Since each node maintains state to virtughbers on both sides on
the ring, there always exists such an endpoint until reacthie destination. This
forwarding scheme is also used to initialize the paths ttualrneighbors when
each node joins the networks. Therefore, VRR does not re@uniy flooding in the
network. However, VRR still does not provide worst-casetirgustretch guaran-
tee, since the proximity on the virtual ring is independenthe proximity in the

physical network.

WSR [1] is another DHT-type routing protocol designed forg&a scale
highly dynamic networks. It requires location informatiohall nodes. It aggre-
gates information about a set of remote locations in a sagierreby mapping a set
of ID to a region. The ID-to-region mappings are represebtedeak Bloom Fil-
ters. The routing task is accomplished using unstructuedom directional walks.
Intermediate nodes prioritize their ID-to-region mapgrig bias and forward the
random walk. WSR can tolerate dynamic changes of the netbac&use the weak
state does not require hard limit on expiration. However RNfay increase path

length compared to traditional geographical routing prots.
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Theoretical work on scalable routing: Theoretical work [19,101] on achieving
scalable and efficient routing has develogedipact routingalgorithms that pro-
vide a worst-case routing stretch of 3 while using at m@&{/N log N) state in
an N-node network. This worst-case routing stretch is provaplymal when each
node uses less than linear routing state [19,101]. Whilgoamtrouting seems to be
a promising direction for large-scale networks, it canretllvectly translated into a
routing protocol in a distributed network. In particuldretproposed algorithms do
not specify how each node should build and maintain routiagggor local clusters
and for beacon nodes. Moreover, the algorithm in [101] nepuchoosing beacon
nodes offline, considers only initial route constructiamj @annot cope with topol-
ogy changes, which precludes realization in our networlirget The implications

of compact routing for average routing stretch also rematiaar.

4.3 S4 Routing Protocol

S4 uses the theoretical ideas of the compact routing algorfl01] as a
basis, refined by the addition of new techniques needed &roatpractical rout-
ing protocol for large-scale wireless networks. We firstadiée the basic routing
algorithm and note challenges for routing protocol desagnd then present the S4
routing protocol. Throughout this chapter, our metric tog tost of a route is the

number of links traversed.¢. hop count).
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4.3.1 Basic Routing Algorithm

In S4, a random set of nodes, are chosen as beacons. For a nadeet
L(d) denote the beacon closest to natlend letd(s, d) denote the shortest path
distance frons to d. Each node constructs the following local cluster, denoted as
Cr(s).
Cr(s) ={ceVl]i(e,s) <kxd(c,L(c))}, k> 1.

whereV is the set of all nodes in the network. A local cluster of nedmnsists
of all nodes whose distancesda@re withink times their distances to their closest
beacons. Each noddhen maintains a routing table for all beacon nodes and nodes

in its own clusteiCy(s).

s'=>d: a route via the L(d) and L(d) :
shortest path the closest beacon

. todandd’ T

s=>d:'a route that A
takes the shortcut

s=>d’ ,:"'a ‘r‘*Q\ute via the
clogest beacon L(d)

d is in the clusters of c¢,s’ and L
@ d’is in the clusters of ¢’ and L

Figure 4.1: S4 routing examples. Every node within the eiafld hasd in its local
cluster. The route’ — d is the shortest path; the route— d takes a shortcut at
before reachind.(d); the routes — d’ is throughL(d’) without shortcut.
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As shown in Figure 4.1, when routing from noglé noded, if d € Cy(s),
we can directly use the shortest path to route frota d. Otherwise,s first takes
the shortest path towards(d), and then use the shortest path to route towdrds
In the second case, the route does not have to always fgagtbefore routing to
d. Whenever data reaches a nadehose cluster containg ¢ can directly route
to d using the shortest path fromto d. According to the triangle inequality, the
“shortcut” strictly improves routing stretch. We give th@léwing theorem as an

extension to the proof in [19, 101], in which a special case 1 is proved.

Theorem 1. LetCy(s) = {c € V|d(c,s) < k*d(c, L(c))}, wherek > 1. If each
nodes maintains next-hop for the shortest path to every beacoreaedy node in

Cy(s), the worst-case routing stretchis+ 2.

Proof. Whend € C(s), routing stretch is 1, since we know the shortest path from

stod. Whend ¢ Cy(s), letr(s, d) denote the cost of selected route freno d.

r(s,d) < 8(s, L(d)) +5(L(d), d) (4.1)
< 5(s,d)+ 26(L(d), d) 4.2)
< 0(s,d) + 20(s,d) 4.3)
= (14 D)(s,d) (4.4)

k

The first inequality is due to possible shortcut before reagli(d). As shown in
Figure 4.1, the shortcut — d is less than: — L(d) — d according to trian-
gle inequality. Hence — ¢ — d is less thans — L(d) — d. Equality holds

when there is no shortcut. The second inequality is due angie inequality and
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symmetry: the shortest path— L(d) should cost no more thanh— d — L(d).
Finally the third inequality is based on the definition ofatler C).(s) and the fact
thatd ¢ Cy(s). This completes the proof. ]

As a special case, when = 1, a local cluster of node consists of all
nodes whose distancesda@re closer than their distances to their closest beacons.
This special case is called compact routing [19, 101]. Itagipularly interesting,
since it has low worst-case storage cosbof/N log N) and provides a worst-case
routing stretch of 3. In the remaining chapter we considet 1, since it gives

small routing state.

Practical concerns dictate three changes to the TZ compatotg scheme [101]
to achieve S4. First, the boundary conditions of the clusédnitions are slightly
different. In S4,C(s) = {c € Vli(c,s) < d(c,L(c))}, but in the TZ scheme,
C(s) = {c € Vl]d(c,s) < d(c, L(c))}. That is, node: is in the cluster ofs in S4
but not in the TZ scheme, (¢, s) = d(c, L(c)). This change does not affect the
worst-case routing stretch, and reduces average-casagaiitetch at the cost of

increasing routing state.

Second, to route towards nodeonly L(d) should be carried in the packet
header as the location information in S4. In comparisonT#hscheme requires a
label(d) = (L(d),port(L(d),d)) for each packet, whergort(L(d), d) is the next
hop atL(d) towardsd. Only with the label carried in the packet header, a beacon
node can forward a packet towardsising next hogort(L(d),d). It is necessary

in the TZ scheme because the beacon nodes do not store retaiagHowever, in

120

www.manaraa.com



S4, as aresult of the boundary condition change, each beactai. stores routing
state to all the nodes that hayeas its closest beacon node. Given that the total
storage cost of the additional fielart(L(d), d) in the labels is the same as the
total number of routing entries at beacon nodes in iS4 lfoth are N), we favor
storing routing state at beacon nodes since it reduces phekeder length and the
frequency of updating labels. The frequency of label upl@eeduced because

labels are updated only whér{d) changes but not whewrt(L(d), d) changes.

Finally, the TZ scheme proposes a centralized beacon nddetise al-
gorithm to meet expected worst case storage baupgd'NlogN) in an N-node
network. Since practicality is our main design goal, in S4 raedomly select
beacon nodes in a distributed fashion. It is proved that whéyN) nodes are
randomly selected as beacon nodes, the average storagencesth node is still
O(v/N) [100]. As our evaluation results show, the storage costilisi@i even
for the worst cases. Note that the worst-case routing sti@ft@ still holds under

random beacon node selection.

4.3.2 Design Challenges

Designing a routing protocol to realize the algorithm pregubin Section 4.3.1

poses the following challenges:

First, how to construct and maintain routing state for allotgster? Unlike
traditional hierarchical routing, each node has its owrsteluin compact routing.

Therefore naive routing maintenance could incur signiticaerhead.

Second, how to construct and maintain routing state for dreamdes?
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Knowledge of next-hops and shortest path distances to bezmdes is important
to the performance of S4. When beacon packets are lost, tii@gatate could be

inaccurate, which could substantially degrade the perdoica.

Third, how to provide resilience against node/link faikieend environmen-
tal changes? Maintaining up-to-date routing state couldxXpensive especially in
a large network. Moreover routing changes take time to gyafea During the tran-
sient period €.g, the period from the time when failure occurs to the time when
the routing tables at all nodes are updated to account fdathuee), many packets

could be lost without a failure recovery scheme.

To address the above challenges, S4 consists of the folipthiree major
components: (i) scoped distance vector for building anchtaaiing routing state
to nodes within a cluster, (ii) resilient beacon distancetaefor efficient routing
towards beacon nodes and facilitating inter-cluster rmytand (iii) distance guided
local failure recovery for providing high quality routeseevunder dynamic topol-

ogy changes. Below we will describe these three componetsn.

4.3.3 Intra-Cluster Routing: Scoped Distance Vector (SDV)

In S4, nodes uses the shortest paths to route towards nodes in the cbister
s. Unlike the traditional hierarchical routing, in S4 eactldae has its own cluster,
which consists of nodes close to nadeThis clustering is essential for providing
a routing stretch guarantee, since it avoids boundarytsffdn comparison, hier-
archical routing cannot provide routing stretch guaraohee to boundary effects,

where two nearby nodes belong to different clusters and igrarchical route be-
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tween them could be much longer than their direct shorteht pa

A natural approach to building a local routing table is to ssgped flooding.
That is, each nodé floods the network up to(d, L(d)) hops away fromi, where
d(d, L(d)) is the distance betweehand its closest beacal(d). Scoped flooding
works fine when the network is initialized, or when there aggmodes joining
the network. But it is costly to send frequent scoped floodmgeflect constant
topology changes, which often arises in wireless netwotestd battery outage,

node failures, and environmental changes.

Scoped distance vector:To provide cheap incremental routing updates, we pro-
pose using scoped distance vector (SDV) for constructingg tables for local
clusters. SDV is attractive because it is fully distribytadynchronous, and sup-
ports incremental routing updates. SDV is more efficienhtheoped flooding es-
pecially under small changes in a network topology, becausmle in SDV propa-
gates routing update only when its distance vector changés im scoped flooding

a node propagates a flooded packet regardless of whethestaack and next hop

to a destination have changed.

In S4, each nodestores a distance vector for each destinafionits cluster

as the following tuple:
< d,nexthop(s,d),d(s,d), seqno(d), scope(d), updated >

whered andnexthop(s, d) are both node IDsegno is the latest sequence number

for destinationd, and scope(d) is the distance betweehandd’s closest beacon,
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andupdated is whether the distance vector has been updated since threldisg

update.

A nodes exchanges its distance vectors with its neighbors eitheatspnously
or asynchronously. Nodeinitializesd(s,c) = 1 for only ¢ € neighbor(s), and
oo otherwise. Upon receiving a distance vector, a hodses the newly received
distance vectors to update its routing state. Nofigther propagates the update for
s only when its current distance fromis belowscope(s) and its distance vector to

s has changed.

Benefits of SDV: SDV supports incremental routing updates. This allows &-wir
less network to dynamically adapt to routing changes. Mageainlike traditional
distance vector protocols, SDV does not suffer from the tooxinfinity problem?
because the scope is typically smalld, We evaluate a 1000-node network with
32 beacons, and its average scope is 3.35 and maximum scbpeThis implies

routing loops can be detected within 13 hops).

4.3.4 Inter-Cluster Routing: Resilient Beacon Distance \Metor (RBDV)

To support routing across clusters, each node is requiréddw its dis-
tances to all beacons. This can be achieved by construcBpgraning tree rooted
from each beacon nodes to every other node in the networkdkig beacon pack-

ets reliably is important to the routing performance, besedoss of beacon packets

1The count-to-infinity problem is that when a link fails, it gntake a long time (on the order
of network diameter) before the protocol detects the failuburing the interim routing loops may
exist.
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may introduce errors in estimating the closest beacon ardistance, and degrade
the performance of S4. We develop a simple approach to eehasdience of

beacon packets.

Routing state construction and maintenance:To construct routing state for bea-
con nodes, every beacon periodically broadcasts beacérsawhich are flooded
throughout the network. Every node then keeps track of tbee$t hop count and

next-hop towards each beacon.

Since beacon packets are broadcast and typical MAC prat@gl CC1000
used in sensor motes) do not provide reliability for broatipackets, it is essential
to enhance the resilience of beacon packets at the netwgak lQur idea is to have
a sender retransmit the broadcast packeintil 7" neighbors have forwarde# or
until the maximum retry counketry,,.. is reached.T” and Retry,,.. provide a
tradeoff between overhead and reliability. In our evaluative useRetry, 4. = 3,

T = 100% for beacon nodes, arifl = 1/3 for non-beacon noded’ = 100% for

a beacon node is used because all neighbors of the beacos stoaldd forward
the beacon packet. In comparison, for a non-beacon nodely a subset of’s
neighbors are farther away from the beacon thand need to forward the beacon

packet received from. Therefore we use a small&rfor non-beacon nodes.

4.3.5 Distance Guided Local Failure Recovery (DLF)

Wireless networks are subject to bursty packet losses agdént topology
changes. To provide high routing success rate and low r@ustiretch even in the

presence of frequent topology changes and node/link &slwe develop a simple
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and effective local failure recovery based on distanceorsct

Overview: A nodes retransmits a packet when it does not receive an ACK within
a retransmission timeout. Whet retransmissions faily broadcasts &ilure re-
covery requestwhich contains (i) the next hopused, (ii) whether destinatiahis
included ins’s local cluster, and (iii) the distance tbif s’s cluster includesi, or

the distance tad’s beacon otherwise. Upon hearing the failure reque&seigh-
bors attempt to recover the packet locally. Our goal is tecte¢he neighbor that is
the closest to the destination gis new next-hop; meanwhile the selection process

should be cheap and easily distributed.

S4 uses distance guided local failure recovery to pri@iteighbors’ re-
sponses based on their scoped distance vectors. Each rexigsugriority to de-
termine the time it needs to wait before sendfagure recovery responseWe
further exploit broadcast nature of wireless medium to @wwiplosion of recovery

responses.

Distance guided local failure recovery:Our goal is to prioritize neighbors based
on their distances to the destination so that the nodesstlaséhe destination can
take over the forwarding. The problem is non-trivial, besmthe distance to the
destination is not always available. When the destinas@utside the local cluster,
a neighbor only knows the distance to the destination’sasiokeacon, but not the

distance from that beacon to the destination.

To address the issues, each node computes its priority tlenglgorithm

in Figure 4.2. It involves two main scenarios. In the firstreo#o, s’s local cluster
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/I Priorities from highest to lowest: 1, 2, 3, 4
if(d € C(s))
if(d € C(self)) /I disins's andsel f’s clusters
priority = §(self,d) — 0(s,d) + 2;
else // d is only ins’s cluster

priority = 4;
end
elseif(d € C(self)) !l disonlyinself’s cluster
priority = 1;

else /lsel f is outsides’s andd’s clusters
priority = §(sel f, L(d)) — d(s, L(d)) + 3;
end

Figure 4.2: Computing priority using scoped distance vecémd beacon distance
vectors

contains the destinatio. This information is available in’s failure recovery
request. Then's neighbor is assigned one of the four priorities using ti®iving
rules. The neighbors that haven their clusters are assigned the top 3 priorities,
since they can directly route towards destination usingktieetest path. In this case,
each neighbor knows its distance to the destination, andressgself a priority
based on the difference betweéfself,d) and (s, d). Neighbors whose local
clusters do not contain the destination are assigned thiéhfpuiority, which is the

lowest.

In the second case, whais cluster does not contain the destinatihronly
the neighbors that havén their clusters are assigned the highest priority, siheg t
can directly route towards the destination. The other nadesssigned priorities

by comparing their distances to the beacon with L(d)).
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A senders selects the neighbor from which it receives the respongeafirs
the new next-hop. By assigning each neighbwith a timerpriority(i) x m + rand,
a higher priority node sends the response earlier and iddhosed as the new next-
hop node. To avoid collisions, we add a small random timexd to the priority-
based timer so that different nodes are likely to respondfateint times even when
assigned the same priority. To avoid response implosiaon ingaring a failure re-
sponse te from someone else, the current node cancels its own peneltoyery

response if any. Our evaluation uses= 50ms, andrand ranges from 0 to 49ms.

Node failures vs. link failures: The above scheme works well for link failures.
When a node fails, all the links to and from the failed nodestmwn. Therefore we
need to avoid using nodes that use the failed nodes as nexthigcan be done by
letting the sender specify the failed node. Only the nodatsutbe different next hop
from the failed node will attempt to recover. In practicasitlifficult to distinguish
between a link failure and a node failure. Always assumingdenfailure may
unnecessarily prune out good next-hops. So we first opicalst assume that the
next hop does not fail, only the link is down. Therefore wewalinodes with the
same next hop to recover the packet. When the number of faitedhpts pass a

threshold, we prevent the nodes from using the same nexthepaver the packet.

4.3.6 Other Design Issues

Location directory: So far we assume that the source knows which beacon node
is closest to the destination. In practice, such infornmatiay not be directly avail-

able. In such situation, the source can apply the locatioectiry scheme de-
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scribed in BVR [26] to lookup such information. More spedaflg, beacon nodes
are responsible for storing the mapping between non-beagdes and their clos-
est beacons. The closest beacon information for riaglstored at (i), where H

is a consistent hash function that mapsleid to beaconid. The source contacts
the beacon node whose ID i$(dest) to obtain the closest beacon dest. The
storage cost of location directory is much smaller in S4 tiah in BVR, because
the source in S4 only needs to know the closest beacon tostmdgon while the
source in BVR needs to know the distance between its deisimand all beacon
nodes. Moreover, in S4 when destinatiors in s’s cluster, no location lookup is
required sinces knows the shortest path th whereas BVR as well as other geo-
graphic routing schemes always require location lookup wevadestination. Such
property is especially beneficial when traffic exhibits ldggi.e., nodes close to

each other are more likely to communicate).

Beacon maintenanceWhen a beacon fails, S4 applies distance guided local fail-
ure recovery to temporarily route around the failure. If thidure persists, we can
apply the beacon maintenance protocol proposed in [26]l&xtsa new beacon.
Beacon maintenance is not the focus of this chapter. Insteafbcus on the rout-

ing performance during the transient period after failwesur.

Link quality: Link quality significantly affects routing performance. Wefine
link quality as the delivery rate of packet on the link in aenvdirection. In S4,
each node continuously monitors its links to/from its néigts. We adopt a passive
link estimator layer developed in [26,106] for estimatimklquality. When a node

receives a beacon packet or SDV update, it first checkmiifi the forward and

129

www.manaraa.com



reverse link qualities of the sender are above a thresh6Bb (8 used in our current
implementation). Only those updates from a sender with dio&djuality in both

directions will be accepted.

4.4 TOSSIM Evaluation

We have implemented a prototype of S4 in nesC language fgOS{41].
The implementation can be directly used both in TOSSIM sataul[63] and on
real sensor motes. In this section, we evaluate the perforenaf S4 using ex-
tensive TOSSIM packet-level simulations. By taking inte@mt of actual packet

transmissions, collisions, and losses, TOSSIM simulagsnlts are more realistic.

Our evaluation considers a wide range of scenarios by vatii@number of
beacon nodes, network sizes, network densities, link kigsrand traffic demands.
More specifically, we consider two types of network densitie high density with
an average node degree of 16.6 and a low density with an avete degree of
7.6. We use both lossless links and lossy links that are geetebylLossyBuilder
in TOSSIM. Note that even when links are lossless, packetssalt subject to
collision losses. In addition, we examine two types of tcafa single flow and 5
concurrent flows. The request rate is one flow per secondrigtesilow traffic, and
5 flows per second for 5-flow traffic. The simulation lasts f60Q seconds. So the
total number of routing requests is 1000 for single-flowficatind 5000 for 5-flow
traffic. We compare S4 with BVR, the implementation of whistavailable from

the public CVS repository of TinyOS.

The performance metrics we are interested in are:
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Routing Success Rate

Routing Stretch

Control Traffic Overhead

Routing State

Node Load of Data Traffic

4.4.1 Routing Performance

First we compare S4 with BVR under stable network conditiofesreach
stable network conditions, we let each node periodicalbatcast RBDV and SDV
packets every 10 seconds. Data traffic is injected into thwork only after route
setup is finished. BVR uses scoped flooding after a packet faltk to the bea-
con closest to the destination and greedy forwarding siil fwhereas S4 uses the
distance guided failure recovery scheme to recover falufe make a fair compar-
ison, in both BVR and S4 beacon nodes periodically broadwastbuild spanning
trees, and RBDV is turned off in S4.

4.4.1.1 Varying the Number of Beacons

We vary the number of beacon nodes from 16 to 40 while fixingtoie!

number of nodes to 1000.

Routing success rateWe study 4 configurations: a single flow with lossless links,

a single flow with lossy links, 5 flows with lossless links, aadlows with lossy
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links. Figure 4.3 shows the results of all 4 configuratiortdD" and “LD” curves

represent results under high and low network densitiepesely.

Single Flow, Lossless Links
a a

Single Flow, Lossy Links
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Figure 4.3: Compare routing success under different nusniidseacons, network

densities and traffic patterns.

We make the following observations. First, under lossless lwith 1 flow,

S4 always achieves 100% success rate. In comparison, BVievashclose to
100% success only in high-density networks, but its sucrssreduces to 93%

under low network density with 16 beacons. Why does BVR novigle delivery
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guarantee even under perfect channel condition? The reasioat, scoped flood-
ing is invoked after a packet is stuck at the fallback beaema, scoped flooding
could cause packet collisions and reduce packet delivéey &econd, under lossy
links with 5 flows, packet losses are common, and the perfocmaf both S4 and
BVR degrades. Nevertheless, S4 still achieves around 9b%thgosuccess rate in
high-density networks, while success rate of BVR drops ataally. The large

drop in BVR is because its scoped flooding uses broadcasetgaeithich have no
reliability support from MAC layer; in comparison, data pats are transmitted in
unicast under S4, and benefit from link layer retransmissiorhird, the success
rate is lowest under low-density networks, with lossy liksl 5 flows. Even in

this case S4 achieves 70% - 80% success rate, while the suatesof BVR is

reduced to below 50%.

Routing stretch: Figure 4.4 compares the average routing stretch of S4 and BVR
The average routing stretch is computed only for the padketishave been suc-
cessfully delivered. Although the worst stretch of S4 id8average stretch is only
around 1.1 - 1.2 in all cases. In comparison, BVR has sigmifigdarger routing
stretch: its average routing stretch is 1.2 - 1.4 for 1 flovd &rd - 1.7 for 5 flows.

Moreover its worst routing stretch (not shown) is 8.

Another interesting observation is that the routing stretcS4 is consis-
tently low regardless of the number of beacon nodes, whéneasuting stretch of
BVR is more sensitive to the number of beacons. The reastaisS¥ reason that

S4 routing stretch remains low under various numbers of

does not have clear impact on routing stretch. This can b&aiega as
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Figure 4.4: Compare routing stretch under different nusloétbeacons, network
densities, and traffic patterns.

follows. On one hand, fewer beacon nodes result in largeal Idcisters. Intra-

cluster routing, which is always optimal, happens moredegtly. On the other
hand, more beacon nodes provide more opportunities fagiater-cluster routing

(in the extreme case where all nodes are beacon nodes, tiregrsuietch is always

1).

Transmission Stretch: As shown in Figure 4.5(a), the transmission stretch of S4
is close to its routing stretch, while the transmissiontstr®f BVR is much larger
than its routing stretch due to its scoped flooding. Figuséy) shows CDF of trans-
mission stretches under 32 beacon nodes. We observe thabisiecase transmis-
sion stretch in S4 is 3, and most of the packets have transmisgetch very close

to 1.

Control traffic overhead: Compared with BVR, S4 introduces extra control traffic

of SDV to construct routing tables for local clusters. Tolaage this overhead, we
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Figure 4.5: Transmission stretch comparison

count the average control traffic (in bytes and number of pajkthat each node
generates under lossless links and a single flow. We sepheatglobal beacon
traffic and local SDV traffic. The results are shown in Figut@ MNote that beacon

traffic overhead is the same for both S4 and BVR.

We can see that when the number of beacons is small, the SB¢ tam-
inates, since the cluster sizes are relatively large in sase. As the number of
beacons increases, the amount of SDV traffic decreases$icagniy. In particular,
when there are 32 beacomrs (/1000), the amount of SDV traffic is comparable to

the amount of global beacon traffic.

Routing state: We compare routing state of S4 and BVR as follows. For S4, the
routing state consists of a beacon routing table and a |Idegster table. For BVR,
the routing state consists of a beacon routing table andghber coordinate table.

We first compare the total amount of routing state in bytewéen S4 and BVR.
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Figure 4.6: Control traffic overhead under different nunshefrbeacons and net-
work densities

Figure 4.8(a) shows the average routing state over all ndflesmake the
following observations. First, network density has liitigpact on the routing state
of S4, but has large impact on BVR. This is because in S4 the ldaster sizes
are not sensitive to network density (when density increaiee scope tends to
decrease), while in BVR each node stores the coordinateas ogighbors and its
routing state increases with density. Second, the amourdubing state in BVR
increases with the number of beacons. In comparison, Sdtspstate does not
necessarily increase with the number of beacons, sinceasitrg the number of
beacons reduces the local cluster size. Third, when the eunftbeacons is 32
(=~ 1/1000) or above, the routing state in S4 is less than BVR. Similaults have

been observed in other TOSSIM configurations.

Figure 4.8(b) further shows the number of entries in beaoatig table,

local cluster table and neighbor coordinate table. The dre&able curves of S4
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and BVR overlap, since it is common for both. Note that altffothe coordinate
tables in BVR have fewer entries than the cluster tables irttg4total size of the
coordinate tables are generally larger since the size ¢f eagrdinate table entry

is proportional to the number of beacons.

Table 4.1 shows maximum routing state of S4 and BVR under thgisity
and low density. The maximum number of routing entries isiadd4.5 times of
v/1000 (the expected average cluster size), but still an order gfibade smaller
than 1000 (the flat routing table size) in shortest path ngutiThis suggests that

random beacon selection does a reasonably good job infignitorst-case storage

cost.
max S4 state (B) | max BVR state (B)| max S4 routing entries
HD | 680 960 136
LD | 715 920 143

Table 4.1: Maximum routing state of S4 and BVR
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Figure 4.8: Routing state comparison under different nusibébeacons and net-
work densities with lossy links (single flow)

Node load: Figure 4.9 shows the average number of packets that eachraode
mits, under lossless links and 5-flow traffic. Figure 4.9¢@ves the beacon node
load, and Figure 4.9(b) shows non-beacon node load. We\ab#&at in S4 both
beacon nodes and non-beacon nodes experience lower laadhitse nodes in
BVR. This is due to lower routing stretch and transmissioatsh in S4. In addi-
tion, we observe thatin S4, the beacon load is within a faaft@r5-2 of non-beacon
load, which means the load is reasonably balanced amongmeacd non-beacon

nodes. Similar results are observed under single flow traffic

4.4.1.2 Varying Network Size

We also evaluate the performance and scalability of S4 whemétwork
size changes from 100 to 4000. For each network 3izave selectk ~ N

nodes as beacon nodes. We only include results under Isdslks and a single
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Figure 4.9: Node load of data traffic under different numlzdreeacons and net-
work densities with lossless Links (5 flows)

flow. The results for other configurations are similar.

Figure 4.11(a) shows the average transmission stretch ah88VR un-
der different network sizes. The error bars represent 5-%ndercentiles. S4
achieves smaller transmission stretches and smallertieensan the stretches. In
BVR, packets experience higher medium stretch and higheticktvariation due to

greedy forwarding and scoped flooding.

Figure 4.11(b) shows the average routing state. For botm88¥R, the
routing state tends to increase with{r/N). This suggests both S4 and BVR are
scalable with network sizes. In particular, even when thvoek size is 4000,
majority of nodes can store the routing state in a small pordif a 4KB RAM (the
RAM size on Mica2 motes we experimented with). Moreover, Sdsuess routing
state than BVR when the number of beacon nodeg)§ because the coordinate

table size in BVR is linear to the number of beacon nodes.
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Figure 4.12 shows the average control traffic generated aVeodes un-
der lossless links and a single flow. The three curves représil traffic, beacon
traffic, and local SDV control traffic, respectively. The amo of local traffic is
consistently smaller than that of beacon traffic undéf beacon nodes. Since bea-
con traffic is the same in S4 and BVR, the total control trafficrbute construction
in S4 is comparable to that of BVR. The difference is furthestuced when traffic

for location directory setup is included.

success routing | transmission control routing

rate stretch | stretch traffic (B) | state (B)
S4 |1 1.07 1.08 96 158
BVR | 0.994 | 1.20 1.31 46 232

Table 4.2: Performance comparison in 100-node networks.

To further study the performance of S4 in smaller networks,campare

S4 and BVR in networks of 100 nodes. We include the resultgHfercase of
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single flow traffic with lossless links. Results are similar bther configurations.
Table 4.2 shows that in 100-node networks S4 outperforms BM&ms of routing
success rate, routing stretch, transmission stretch,@urihg state. S4 incurs more
control overhead than BVR due to the extra SDV traffic, thotigloverall control
traffic (after including location directory setup traffig) still comparable to that of

BVR.

4.4.2 Impact of RBDV

Next we evaluate resilient beacon distance vector (RBD\A.tivh off pe-
riodic transmissions of beacon and SDV messages so thatited fransmissions
of these messages have to be recovered using RBDV but n@ psiiodic bea-
con transmissions. This is an interesting scenario to densiecause we want to
minimize the frequency of periodic broadcasts while sthigving high delivery
rate. Each beacon broadcasts once. Other nodes who redsdaean packet fur-
ther broadcast it. Similarly, a non-beacon node broaddastsvn scoped distance

vector once. A node further broadcasts a SDV only if it isdegihe scope.

We simulate for single-flow data traffic with lossless linkegd compare the
routing success rate between the case with and without RBCWhOth cases, DLF
is enabled. Packet collisions are common when nodes brsilkeacon packets or
scoped distance vectors. As shown in Figure 4.13, withouDRBhe success rate
is around 90%. With RBDV, the success rate is improved toeclod00% because

RBDV helps to improve accuracy of the routing tables.
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Figure 4.13: Impact of RBDV on success rate (1000 nodes, Evgitly)

4.4.3 Impact of Node Failures

To evaluate the performance of S4 under node failures, waoraty kill a
certain number of nodes right after the control traffic issiv@d. Different from
the experiments in [26], we start node failures from the eigig,i.e. the control
traffic is also subject to node failures. We distinguish kestw beacon and non-

beacon failures,

Figure 4.14 shows that failure recovery can significanttyease the suc-
cess rate under both non-beacon and beacon failures. DL# im18ore effective
than the scoped flooding in BVR for the following reasonsstriscoped flooding
results in packet collisions. Second, S4 uses unicast tartdensmissions and ben-
efits from link layer retransmissions. Third, if some nodensen the beacon and

destination fails, DLF can recover such failures, whilepambflooding cannot.

Next we compute the average routing stretch over all suttdgsdelivered

packets. As we expect, packets going through failure regowake longer than
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Figure 4.14: Impact of DLF on success rate (1000 nodes, 3@bsalow density)

normal paths. Interestingly, as shown in Figure 4.15, trexaye routing stretch
is only slightly higher than the case of no failure recovemich indicates the

robustness of S4.

Summary Our TOSSIM evaluation further confirms that S4 is scalabliatge
networks: the average routing state scales Witk/ V) in an N-node network. The
average routing and transmission stretches in S4 are arbdnrtl.2. This is true
not only in lossless networks under single flow traffic, bsoalinder lossy wire-
less medium, packet collisions arising from multiple floasd significant failures.
This demonstrates that S4 is efficient and resilient. In cmmspn, the performance
of BVR is sensitive to wireless channel condition. Even urldss-free networks,
it may not provide 100% delivery guarantee due to possibtdkgtacollisions in-
curred in scoped flooding. Its routing and transmissionates also increase with

wireless losses and failures.
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Figure 4.15: Impact of DLF on routing stretch (1000 nodesh&&cons, low den-
sity)

4.5 Testbed Evaluation

We have deployed the S4 prototype on a testbed of4z:2 motes with
915MHz radios on the fifth floor of ACES building at UT Austin.hile the testbed
is only moderate size and cannot stress test the scalabfli§4, it does allow
us to evaluate S4 under realistic radio characteristicsfaihdes. We adjust the
transmission power to -17dBm for all control and data traffiobtain an interesting
multi-hop topology. With such a power level, the testbeddastwork diameter of
around 4 to 6 hops, depending on the wireless link qualitynbies are connected
to the MIB600 Ethernet boards that we use for logging infdroma They also

serve as gateway nodes to forward commands and responghs femaining 31

battery-powered motes.

2Unfortunately, we are unable to compare S4 against BVR irtestbed. Current BVR imple-
mentation requires all motes have Ethernet boards cormhersznd and receive routing commands.
However our testbed only has 11 motes with Ethernet cororeg;tivhich would make the evaluation
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Figure 4.16(a) shows a snapshot of the network topology. Wasore
packet delivery rates by sending broadcast packets on eatshane by one. Two
motes have a link if the delivery rates on both directionsadreve 30%. Because
no two nodes will broadcast packets at the same time, theurerasnt result is
optimistic in the sense that channel contention and networijestion is not con-
sidered. The average node degre8./s We observe that a short geographic dis-
tance between two motes does not necessarily lead to gdoquality. Some of
the links are very asymmetric and their qualities vary drigcally over time. As
shown in Figure 4.16(b), some of the links are highly asynmimand their qualities
vary dramatically over time. For example, the link quasitieetween motes 4 and
31 fluctuate as time goes by and are quite asymmetric, whikeglualities between
motes 1 and 15 are fairly stable to 100% delivery rate, untthie last one hour
when they suddenly drop to almost 0%. Such link charactesisilow us to stress

test the performance and resilience of S4.

4.5.1 Routing Performance

We randomly preselect 6 nodes out of 42 nodes as beacon nod&4.f
The distance from any node to its closest beacon is at mosp2 hdter 10 min-
utes of booting up all the motes, we randomly select sourdedastination pairs
to evaluate routing performance. The sources are seleasddll 42 motes and
the destinations are selected from the 11 motes that areectethto the Ethernet

boards. All destinations dump the packet delivery confiromathrough UART to

less interesting.
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time period | # pkts per seg¢ routing success rate
0-70.1 min 1 99.9%
70.1 - 130.2 min 2 99.1%

Table 4.3: Routing success rate in the 42-node testbed.

the PC for further analysis. For each routing request, gritessource is connected
to an Ethernet board, we choose the gateway mote that isdbestito the source to
forward a command packet. The command packet is sent wittméxémum power
level, and up to 5 retransmissions so that the source is Nty to receive it. Upon
receiving the routing request, the source will send baclspaese packet with the
maximum power level and potential retransmissions, to eskedge successful
reception of the routing request. Each routing requestgged with a unique se-
guence number to make the operation idempotent. The daketpad! be sent

(with the reduced power level) after the command traffic ticinterference.

We send routing requests at 1 packet per second for the firstid0tes
(altogether 4210 packets), and then double the sendindhateafter for another
60 minutes (altogether 7701 packets). As shown in Tabletde3routing success
rate is 99.1-99.9%, and consistent over time. This dematestthe resilience of S4

in a real testbed.

Next we use multiple constant bit rate (CBR) flows to incretagenetwork
load. In each multiple flow test, we randomly pigksource destination pairs, and
instrument the sources to send consecutive packets at th@frd packet pek
seconds. This is essentially havings random flows per second. The flows start

after a predefined idle period to avoid potential collisiaiih the command traffic.
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We chooses = 2, and test up to 6 concurrent flowise(, n is up to 12). For each
experiment, we repeat it for 10 times. Figure 4.17 plots tleelian routing success
rates in different flow settings. The error bars indicatelibst-case and worst-case
routing success rate. We see the median success rate disadefyrades with an
increasing number of concurrent flows. Our log collectednftbe gateway motes
indicates that some of the failures are due to the limitatibsingle forwarding
buffer per node. Such failure happens when two or more floyvgtconcurrently
route through the same node. Note that this is not a protouodbtion in S4. We
could remove many such failures by having a more completéeim@ntation with

multiple forwarding buffers, which will be part of our futeimwork.

Finally we study the routing efficiency of S4. Note that itnsgossible to
calculate the true routing stretch in a real wireless nédtvibmcause the topology
is always changing and the packet loss rates depend on ffie prattern so that
the optimal routes are changing, too. Instead, we compaegduhst thepseudo

optimal hop counmetric. The pseudo optimal hop count of a route is defined as
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the shortest path length insmapshobf the network topology. In our experiment,
we use broadcast-based active measurement to obtain tixegegpacket delivery
rates before the routing test starts. The delivery rateavseaged over 1-hour mea-
surement period. Note that the real optimal routes couldtherebetter or worse
than the pseudo optimal ones due to topology changes, artttlivery rates tend
to be optimistic due to no packet collision in the measurdgm&he routing tests
follow the measurement within 30 minutes. We randomly sedecrce and des-
tination pairs and send routing requests at 1 packet penddoo 5000 seconds.
Then we change the number of beacons from 6 to 3, and repesaitine test. The
shortest paths from the topology snapshot are computedenffiigure 4.18 shows
that more than 95% of the routes are within 1-hop differemomfthe pseudo opti-
mal hops under 6 beacons. Interestingly, S4 sometimeswadhetter performance
than the pseudo optimal scheme. This is because during @@ $fcond routing

experiment, S4 adapts to the change of topology so that itat@advantages of
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new links and reduce path lengths. The number of beacon$iatsboth positive
and negative effects on routing performance. When fewecdreaare selected,
the nodes tend to have larger routing tables so that moresrzadebe reached via
the shortest paths; however, having fewer beacons alse teadore control traffic
so that the link estimator will have a more pessimistic eatiom on link quality

due to packet collision. Underestimating link quality aygdly hurts the routing

performance.
1,
0.8
y 0.6
&)
o4 .
e ---neighbor only
0.2 I —6 beacons
st 3 beacons
00 10 20 30

number of routing table entries

Figure 4.19: Routing table size

In the same experiment, we also study the routing state pee imo S4.
Figure 4.19 compares the numbers of local routing tableesntised under 6 and
3 beacons. Using 6 beacons yields smaller routing tablesod® in S4 has local
routing state towards its neighbor unless the neighbor sagdn node. Therefore
the number of routing entries at each node is generally lalga the number of
its neighbors. We find that on average, when 6 beacons are theegbuting table

has only 3 more entries than a typical neighborhood tablé&wsuggests that the
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routing state in S4 is small.

4.5.2 Routing Under Node Failures

To stress test the resilience of S4, we artificially introelmode failure in
our testbed. We randomly select non-gateway motes to kdllmnone, and study
the routing performance. We send one routing request penddor 50 minutes,
altogether generating 3000 packets. The source node ismdpdelected from the
current live nodes and the destination is one of the gatewagsnNote that we do
not start any SDV update or beacon broadcast after thelisétap stage in order

to study the effectiveness of the failure recovery mecmari®ne.
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Figure 4.20: Routing performance under node failure

As shown in Figure 4.20, in the first 30 minutes, even when 2@emare
killed, including a beacon node, the routing success ratdilisclose to 100%.
The routing success rate starts to drop after 30 minutestadc@ngestion at some

bottleneck links. When the second beacon is killed, the ostig partitioned and
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more routing failures are expected. The third major pertoroe degradation occurs
after all 31 non-gateway motes are dead, which causes furéte/ork partitions.

These results show that S4 is resilient to failures.
Summary Our evaluation in the 42 node testbed shows that S4 achiéves o
100% routing success rate in a normal condition with a sifigle. Meanwhile

S4 degrades gracefully with an increasing number of paakésions (in multiple

concurrent flows) and node failures.
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Chapter 5

Conclusions and Future Work

In this section, we summarize the contributions of the dtatien and give

directions for future work.

5.1 Conclusions

MWNs bring new fundamental challenges to network managéntérst,
multihop connections make localization more difficult @ modes are not in direct
range of anchor points. Second, interactions among nodksigwificant complex-
ity in modeling and understanding wireless interferencairdl effective routing
control is hard when network scale increases. To address tfallenges, we de-
velop (i) probabilistic region-based localization algms, (i) a general model of

wireless interference, and (iii) a scalable routing protdor large MWNSs.

e Probabilistic Region-Based Localization: We propose distributed, proba-
bilistic region-based algorithms for localization undeultinop connections.
The algorithms take simple binary connectivity measurdames basic lo-
cation constraints. The mutual constraints among nodemadeled in the
computations of probability distributions. To improve acacy, the algo-

rithms can also take additional measurements, such asgfiagred connec-
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tivity, layout maps and angle information. Furthermore,exéend the basic
algorithms to enhance robustness of localization. Throeiglnsive simu-
lations, we verify that our algorithms can achieve high aacwy with low

computation cost, and tolerate significant measuremeoitserr

The accuracy of our algorithms is attributed to their prolstic nature. It
handles uncertainty and errors better than determinigficcaches that es-
timate locations as single points. With iterative compotag of probability
distributions, nodes can take advantage of estimatioms #ach other for

refinement even they are multiple hops away.

A General Model of Wireless Interference: To study wireless interference
and its impact, we develop a general interference modelkés simple RSSI
measurements from real networks and models the interdepeies$ among
transmissions and receptions of the nodes. It allows usdarately estimate
the throughput and goodput in static multi-hop wirelesswoeks. Compared
to existing measurement-based models, our model can haridteary num-
ber of senders, unicast transmissions, and non-saturatiid tlemands. It
provides a powerful tool to conduct what-if analysis andokdind optimal

network configurations, such as power and channel assignmen

At the core of our model is a-persistent CSMA approximation to 802.11
DCF. This methodology can be generalized and applied to hMAE pro-
tocols other than 802.11. The main difference is that irtligi node’s state
transition probabilities should be computed based on th€NM#otocol to be

modeled. TheV-node Markov chain framework would still be applicable.
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e Small State and Small Stretch Routing:For routing control in large scale
MWNSs, we present a new routing protocol, Small State and E8te¢tch
(S4), which jointly minimizes routing state and routingesth. S4 is a unique
addition to the routing protocol design space. Specificélig the first rout-
ing protocol that achieves a worst-case constant routirejcst of 3, using
O(+v/N) routing state per node, in as-node large scale wireless networks.
And it employs a distance guided local failure recovery sohéo signifi-
cantly enhance network resilience to failures. We evalB8dteiith both sim-
ulations and testbed experiments, and demonstrate thain&dtaneously

achieves scalability, efficiency, and reliability.

S4 adapts the idea of compact routing. It shows an exampletdgpl design
guided by existing results in theory research area. How tkentiaeoretical
results work in reality is not trivial. Many new problemssaiin real im-
plementation. In our case, we combine new techniques wiitltmmpact

routing to obtain a practical routing protocol for large lsdsiWNSs.

5.2 Future Work

Management in MWNSs has received little attention until relye This dis-
sertation makes preliminary efforts in addressing somé@fchallenges involved
in this area. There are many interesting directions to ergior future work. We

briefly describe several possible topics for measuremendgitng, and control.
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e Measurement: Measurement has been more and more important in network-
ing research, since it reflects the true state of underlyetgvorks. Auto-
matic, efficient, and accurate measurements are desired\iNg/manage-
ment. For our interference model, the RF profiling still reedprovement.
Currently, we estimate RSS using average RSSI. This estimatay be bi-
ased for lossy links, because we can only directly measu&d RE&received
packets. How to estimate RSS for lossy links is an intergssimbject for

future work.

e Modeling: Our interference model estimates throughput and goodpuni«f.
In practice, traffic may traverse more than one link. Whatsisee, and hence
care more about, is end-to-end performance of a data flow.tuxdwirec-
tion to extend the current model is to estimate end-to-enoutihput and
goodput based on the estimations of links. For the extendetkemwe are
given end-to-end traffic demands and routing, from which eedito derive
per hop demands. Then we can apply the current model to @stpeahop

performance, and finally estimate the end-to-end perfooman

e Control: In currentimplementation of S4, we use the simplest routiegyic,
hop count. However, hop count metric is not always corrdlatgh network
performance. In fact, since long hops usually have poorityual route of
fewer but longer hops may have higher loss rate. It is theegboeferred to
use more performance-relevant metrics. To guarantee th&t\ease stretch

of 3, the routing metrics must be additive and symmetric. ESBXsfies the
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conditions and is a promising choice of metrics for S4. HoavelzTX of a
link may change due to variations of channel conditionss i challenging

issue to maintain routing states up-to-date with ETX.

Mobility poses similar problem to routing control. Node neovent can cause
frequent topology changes, which may invalidate existmging states. Mo-
bility is common in MANETSs. Mesh networks may also have lowtedium
node mobility. Therefore, it is important for routing to squt mobility.
With current design of S4, it may require frequent broadchsteacon dis-
tance vector messages and scoped distance vector mesgaighsnvoke too
much overhead, to maintain routing states consistent wihlbgy changes.
New mechanisms are needed to reduce such overhead wHilgcki#gving

the trade-off among scalability, efficiency, and relidlili

Finally, there are many other controls to explore in futiech as channel
assignment, power control, node placement, etc. Each of lfaes significant
impact on network performance. The output from the interiee model can

guide these controls to achieve optimal performance.
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